Set of trapezohedra | |
---|---|
Faces | 2n cerfs-volants |
Arêtes | 4n |
Sommets | 2n+2 |
Configuration des faces | V3.3.3.n |
Groupe de symétrie | Dnd |
Polyèdre dual | antiprisme |
Propriétés | convexe, de face uniforme |
Le trapézoèdre ou antidiamant ou deltoèdre n-gonal est le polyèdre dual d'un antiprisme n-gonal régulier. Ses 2n faces sont des deltoïdes congrus (ou cerfs-volants). Les faces sont décalées symétriquement.
Le nom trapézoèdre est trompeur puisque les faces ne sont pas des trapèzes, mais le terme alternatif deltoèdre est quelquefois confondu avec le terme non relié deltaèdre.
La partie n-gonale du nom ne fait pas référence aux faces mais à l'arrangement des sommets autour d'un axe de symétrie. L'antiprisme dual n-gonal possède deux faces n-gonales.
Un trapézoèdre n-gonal peut être décomposé en deux pyramides n-gonales égales et un antiprisme n-gonal.
Dans les textes décrivant les habitus en minéralogie, le mot trapèzoèdre est souvent utilisé pour faire référence au polyèdre connu sous le nom d'icositétraèdre trapézoïdal.
Dans le cas du dual d'un antiprisme régulier triangulaire, les cerfs-volants sont rhombiques, par conséquent, ces trapézoèdres sont aussi des zonoèdres. Ils sont appelés rhomboèdre. Ce sont des cubes dimensionnés dans la direction d'une diagonale. Ce sont aussi des parallélépipèdes avec des faces rhombiques congrues.
Un cas particulier de rhomboèdre est celui dont les losanges qui forment les faces ont des angles de 60° et 120°. Il peut être décomposé en deux tétraèdres réguliers égaux et un octaèdre régulier. Puisque les parallélépipèdes peuvent remplir l'espace, comme peut le faire un combinaison d'un tétraèdre régulier et d'un octaèdre régulier.
Le groupe de symétrie d'un trapézoèdre n-gonal est Dnd d'ordre 4n, excepté dans le cas d'un cube, qui possède un groupe de symétrie plus large Od d'ordre 48, qui a quatre versions de D3d comme sous-groupes.
Le groupe de rotation est Dn d'ordre 2n, excepté dans le cas d'un cube, qui possède le groupe de rotation plus large O d'ordre 24, qui a quatre versions de D3 comme sous-groupes.