L'inégalité de Bernoulli stipule que :
pour tout entier naturel n , et tout nombre réel x non nul et strictement supérieur à -1.
Soit
On va définir la fonction f définie sur
On va montrer que la fonction f > 0 sur l'intervalle
La dérivée de la fonction sur le domaine considéré est :
On étudie maintenant le signe de la dérivée :
La fonction f est donc strictement décroissante sur l'intervalle
Pour
On a donc bien f > 0 sur l'intervalle
Voici une démonstration par récurrence
1) Initialisation :
Pour n=2 en supposant x non nul on a :
ou encore :
Donc la propriété est vraie au rang 2.
2) Hérédité :
Hypothèse de récurrence :
Montrons que la propriété est vraie au rang suivant k+1 :
Or
D'où
3) Conclusion :
La propriété est vraie au rang 2 et elle est héréditaire donc vraie pour tout entier n supérieur ou égal à 2 avec x non nul et strictement supérieur à -1.