Colinéarité
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

En géométrie vectorielle, deux vecteurs \vec u et \vec v sont colinéaires si et seulement s'il existe un scalaire k tel que \vec v = k\vec u ou \vec u = k\vec v.

Étymologiquement, on remarque que colinéaire signifie sur une même ligne. En effet, en géométrie affine (La géométrie affine est la géométrie des espaces affines : il s'agit grossièrement d'ensembles de points définis par des propriétés spécifiques permettant de parler...), deux vecteurs sont colinéaires si et seulement s'il existe deux représentants de ces vecteurs situés sur une même droite i.e. il existe trois points A, B, C alignés tels que

\overrightarrow{AB} = \vec u et \overrightarrow{AC} = \vec v

La colinéarité (En géométrie vectorielle, deux vecteurs et sont colinéaires si et seulement s'il existe un scalaire k tel que ou .) est une notion importante en géométrie (La géométrie est la partie des mathématiques qui étudie les figures de l'espace de dimension 3 (géométrie euclidienne) et, depuis le XVIIIe siècle, les...) affine (En mathématiques, affine peut correspondre à :) car elle permet de définir

  • l'alignement : les points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
  • le parallélisme de deux droites : les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires

On peut remarquer que le vecteur (En mathématiques, un vecteur est un élément d'un espace vectoriel, ce qui permet d'effectuer des opérations d'addition et de multiplication par un scalaire. Un n-uplet peut constituer un exemple de vecteur, à...) nul est colinéaire à tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) autre vecteur de l'espace vectoriel (En algèbre linéaire, un espace vectoriel est une structure algébrique permettant en pratique d'effectuer des combinaisons linéaires. Pour une introduction...).

Sur l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout », comme...) des vecteurs non nuls, la relation de colinéarité est

  • réflexive : un vecteur est colinéaire à lui-même
  • symétrique : Si un vecteur \vec u est colinéaire à un vecteur \vec v alors \vec v est colinéaire à \vec u
  • transitive :Si un vecteur \vec u est colinéaire à \vec v et si \vec v est colinéaire à \vec w alors \vec u est colinéaire à \vec w

Ce qui permet de dire que (sur l'ensemble des vecteurs non nuls) la relation de colinéarité est une relation d'équivalence dont les classes d'équivalence forment l'espace projectif associé à l'espace vectoriel

Page générée en 0.068 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique