Livre II des Éléments d'Euclide - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

Le Livre II des Éléments d'Euclide contient ce qu'on appelle habituellement — et à tort — l'algèbre géométrique. En effet, une grande partie de ses propositions peuvent s'interpréter algébriquement, ce que n'ont pas manqué de faire les mathématiciens arabo-musulmans, en particulier al-Khwarizmi.
Il ne s'agit pas d'algèbre car ce livre ne résout pas de problème numérique et encore moins d'équation, il ne traite que d'égalités d'aires de rectangles ou de carrés.

Voici le contenu de ce livre :

  • 2 définitions
  • 14 propositions :
  • Proposition II-1 des Éléments d'Euclide]] à Proposition II-3 des Éléments d'Euclide', distributivité de la multiplication par rapport à l'addition
  • Proposition II-4 des Éléments d'Euclide, identité remarquable (a+b)2=a2+2ab+b2
  • Proposition II-5 des Éléments d'Euclide et Proposition II-6 des Éléments d'Euclide, résolution d'équations du second degré
  • Proposition II-7 des Éléments d'Euclide à Proposition II-10 des Éléments d'Euclide, autres identités remarquables
  • Proposition II-11 des Éléments d'Euclide, section dorée
  • Proposition II-12 des Éléments d'Euclide et Proposition II-13 des Éléments d'Euclide, théorème d'al-Kashi
  • Proposition II-14 des Éléments d'Euclide, construction de la moyenne géométrique
Éléments d'Euclide
Livre I ~ Livre II ~ Livre III ~ Livre IV ~ Livre V ~ Livre VI
Livre VII ~ Livre VIII ~ Livre IX ~ Livre X ~ Livre XI ~ Livre XII ~ Livre XIII
Page générée en 0.070 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise