Addition
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Opération numérique

Notation

Ancien symbole de l'addition

L'addition de deux termes a et b se note habituellement a + b et se lit « a plus b », parfois « a et b » ou « a ajouté à b ».
Le signe « + » remplace depuis la fin du XVe siècle (Un siècle est maintenant une période de cent années. Le mot vient du latin saeculum, i, qui signifiait race, génération. Il a ensuite indiqué la durée d'une génération humaine et faisait 33 ans 4 mois (d'où...) le symbole p pour « plus ».

Cette notation infixe peut être remplacée dans certains contextes par une notation fonctionnelle (En mathématiques, le terme fonctionnelle se réfère à certaines fonctions. Initialement, le terme désignait les fonctions qui en prennent d'autres en...) + (a,b) ou par une notation postfixée (a)(b) + .
Dans la décomposition (En biologie, la décomposition est le processus par lequel des corps organisés, qu'ils soient d'origine animale ou végétale dès l'instant qu'ils sont privés de vie,...) arborescente d'une expression algébrique, l'addition (L'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme les longueurs, les aires, ou les volumes. En...) est représentée par un nœud trivalent avec deux entrées et une sortie.

Lotus-stylized-1000.svg
Hiero chiffre 100.svgHiero chiffre 100.svg
Hiero chiffre 10.png
Hiero chiffre 1.svgHiero chiffre 1.svgHiero chiffre 1.svgHiero chiffre 1.svg
Hiero chiffre 100.svgHiero chiffre 100.svgHiero chiffre 100.svg Hiero chiffre 10.png Hiero chiffre 1.svgHiero chiffre 1.svgHiero chiffre 1.svg

Dans un système de notation additive tel que le système unaire (Le système unaire aussi appelé système monadique est le système de numération additif le plus simple pour représenter les entiers naturels. Ainsi pour représenter un nombre N, il suffit de répéter N fois un symbole choisi...) ou la numération égyptienne (Les Égyptiens de l'Antiquité utilisaient un système de numération décimal. Chaque ordre de grandeur (unités, dizaines, centaines, etc.) possédait un signe répété le nombre de fois...), le signe « + » n'a pas besoin (Les besoins se situent au niveau de l'interaction entre l'individu et l'environnement. Il est souvent fait un classement des besoins humains en trois grandes catégories : les besoins primaires, les besoins...) d'être indiqué puisque l'écriture des nombres consiste déjà à décomposer les nombres en une somme de valeurs numériques fixées.

Dans un système de notation positionnelle (La notation positionnelle est un procédé d'écriture des nombres, dans lequel chaque position est reliée à la position voisine par un multiplicateur, appelé base du système de numération. Chaque position peut être représentée par un...) telle la notation moderne, l'addition de plusieurs nombres est parfois représentée par la superposition (En mécanique quantique, le principe de superposition stipule qu'un même état quantique peut possèder plusieurs valeurs pour une certaine quantité observable (spin,...) des écritures de nombres, tous les chiffres d'une même position étant alignés verticalement. Cette disposition facilite le de la somme de plusieurs nombres.

Propriétés

L'addition de nombres possède certaines propriétés valables dans tous les ensembles de nombres usuels :

  • elle est commutative, c'est-à-dire que l'ordre dans lequel sont donnés les termes de l'addition n'a pas d'influence sur le résultat :

a + b = b + a ;

  • elle est associative, c'est-à-dire qu'il n'y a pas besoin de préciser par des parenthèses l'ordre dans lequel est effectuée une suite d'additions :

(a + b) + c = a + (b + c), d'où la notation sans parenthèses a + b + c ;

  • elle est simplifiable, c'est-à-dire que dans une égalité d'additions, on peut supprimer deux termes identiques de part et d'autre du signe égal :

si x + a = y + a alors x = y ;

  • l'élément nul ou zéro, noté 0, est neutre pour l'addition :

a + 0 = a.

Chaque nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) x possède un symétrique pour l'addition, appelé « opposé » et noté x, c'est-à-dire tel que x + ( − x) = − x + x = 0.
Les ensembles de nombres \mathbb{Z}, \mathbb{D}, \mathbb{Q} et \R possèdent tous les opposés de leurs nombres, mais l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout », comme...) \N ne possède pas les opposés des nombres entiers strictement positifs.

L'addition avec un symétrique permet de définir la soustraction (La soustraction est l'une des opérations basiques de l'arithmétique. La soustraction combine deux ou plusieurs grandeurs du même type, appelées opérandes, pour donner un seul...) par xy = x + ( − y).

Procédé de calcul

Un abaque

L'évaluation du résultat d'une addition dépend du système de numération (Un système de numération est un ensemble de règles d'utilisation des signes, des mots ou des gestes permettant d'écrire, d'énoncer ou de mimer des nombres. Sous leur forme écrite, ces derniers sont nés, en...) employé, c'est-à-dire de la manière de représenter les nombres.

Dans un système additif, il suffit de juxtaposer les écritures puis de simplifier l'expression en regroupant les symboles de même valeur pour en remplacer une partie par des symboles de valeur plus élevée lorsque c'est possible. De manière générale, les systèmes de numération non chiffrés ont pu développer une technique d'addition par la pratique de l'abaque.

+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18
Table d'addition en écriture positionnelle décimale

Dans un système de numération positionnelle chiffrée, le calcul d'une somme d'entiers passe par l'utilisation d'une table d'addition. Celle-ci permet de trouver la somme des chiffres sur chaque position.

L'écriture du résultat se fait de la position la plus basse à la position la plus haute (de droite à gauche en notation moderne). Pour chaque position, on inscrit le chiffre (Un chiffre est un symbole utilisé pour représenter les nombres.) des unités de la somme des chiffres et on reporte une retenue sur la position suivante si cette somme est plus grande que la base. Chaque chiffre du résultat est ensuite incrémenté de l'éventuelle retenue.

Pour clarifier visuellement le procédé, on peut commencer par poser l'addition, c'est-à-dire, en notation moderne, écrire l'un en dessous de l'autre les nombres à additionner en alignant verticalement les positions correspondantes.

Cette méthode se généralise pour les nombres décimaux en alignant verticalement les virgules.

L'addition de fractions d'entiers passe par une mise au même dénominateur, puis une addition des numérateurs et enfin par une éventuelle simplification de la fraction obtenue.

\frac{7}{10} + \frac{5}{6} =\frac{7\times 3}{10\times 3} + \frac{5\times 5}{6\times 5} = \frac{21}{30} + \frac{25}{30} = \frac{21+25}{30} = \frac{46}{30} = \frac{23}{15}

Quant à l'addition des fractions égyptiennes de numérateur unitaire et de dénominateurs tous distincts, elle fait appel à un processus itératif (Le processus itératif est une séquence d'instructions destinée à être exécutée plusieurs fois et autant de fois qu'on peut en avoir besoin. C'est aussi une exécution de la séquence.) de simplification des fractions apparaissant en double.

Les sommes d'entiers, de décimaux et de rationnels peuvent toujours se ramener à une forme où ne figure plus le signe « + ». En revanche, une somme de réels n'admet pas toujours une telle forme : on ne peut pas simplifier l'écriture de 1 + 2.

Itération

En choisissant un terme constant r, l'addition permet de définir une fonction x\to x+r que l'on peut itérer pour construire des suites arithmétiques de raison r.
De telles suites (un) vérifient pour tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) entier positif n la relation un + 1 = un + r. Elles s'écrivent alors sous la forme :
(u_0, u_0+r, u_0+r+r, u_0+r+r+r, \dots).

Ces répétitions d'addition permettent de définir la multiplication (La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division .) par un nombre entier :
p \times r = \underbrace{r + \dots + r}_{\textstyle p\ \mbox{fois}}.

L'addition d'une suite finie de nombres définie par une formule générale (par exemple, l'addition des entiers impairs de 1 à 99) utilise des procédés spécifiques qui quittent le domaine opératoire de l'addition. L'étude des suites et séries associées fournit des méthodes plus efficaces pour le calcul de telles sommes.

Culture (La définition que donne l'UNESCO de la culture est la suivante [1] :) populaire

L'addition donne aussi lieu à certains jeux. La mourre, par exemple, consiste à deviner la somme de deux petits nombres, que les deux adversaires donnent simultanément avec leurs doigts.

En poésie, elle est évoquée par la Page d'écriture de Jacques Prévert.

Page générée en 0.232 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique