Si la popularité du modèle des automates cellulaires vient en grande partie d'une approche expérimentale, il fut dès l'origine abordé comme un objet mathématique par Von Neumann. La plupart des travaux formels sur les automates cellulaires utilisent la définition ci-dessous bien que le modèle admette de nombreuses intéressantes.
Un automate cellulaire est un 4-uplet (d,Q,V,δ) où :
On appelle alors configuration l'attribution d'un état à chaque cellule du réseau : une configuration est un élément de
À cette description finie et locale, on associe la fonction globale d'évolution de l'automate,
Les automates cellulaires ont été étudiés comme des systèmes dynamiques dès les années 1960 avec les travaux de G. A. Hedlund. Lorsque la dimension d et l'alphabet Q sont fixés, on peut munir l'espace des configurations de la métrique de Cantor par la distance dC définie par
L'ensemble des automates cellulaires d'alphabet Q et de dimension d est alors caractérisé par le théorème de Curtis-Hedlund-Lyondon : F est la fonction globale d'un tel automate cellulaire si et seulement si c'est une fonction continue de
À partir de là, les automates cellulaires peuvent être étudiés avec tout l'outillage de la théorie des systèmes dynamiques classique, de la théorie du chaos et de la théorie ergodique, lorsque l'on munit l'espace des configurations d'une mesure.
Cette branche de la théorie des automates cellulaires reste largement ouverte et fait toujours l'objet de recherches (voir ici pour un exemple de question importante non résolue à ce jour).
On peut considérer les automates cellulaires aussi bien comme des systèmes dynamiques discrets que comme des systèmes de calcul. Ainsi, chaque automate est capable de réaliser certains calculs (plus ou moins intéressants) ou d'exhiber certains comportements dynamiques (plus ou moins complexes). Que l'on adopte l'un ou l'autre des points de vue, on peut se poser une même question : existe-t-il un automate capable de faire tout ce que peuvent faire les automates cellulaires ? Un tel automate est alors dit universel.
La notion d'universalité correspond à une idée très simple et très générale, mais il faut prendre garde au fait que selon le sens que l'on met derrière l'expression "capable de faire" les automates universels ne sont pas les mêmes. On peut distinguer deux types de notions d'universalité pour les automates cellulaires : l'universalité Turing qui est associée à la capacité de calcul et l'universalité intrinsèque qui est associée à la capacité de produire certains comportements dynamiques.
Le fait remarquable est que pour chacune de ces notions il existe des automates universels. Il faut noter également que la notion d'universalité intrinsèque est plus forte que l'universalité Turing : en effet, sans rentrer dans les détails, un automate capable de simuler tous les automates peut en particulier simuler un automate Turing-universel et donc effectuer tous les calculs Turing. En revanche, il existe des automates cellulaires Turing-universels qui ne sont pas intrinsèquement universels.
L'universalité Turing est une adaptation aux automates cellulaires de l'universalité pour le calcul. On peut définir cette notion comme la capacité d'un automate à simuler une machine de Turing universelle. Cette possibilité de simulation d'une machine de Turing par un automate cellulaire est très simple et était connue dès les travaux de John von Neumann. Il existe plusieurs manières de la formaliser et ce qui suit est l'une des plus simples. Si M est une machine de Turing fonctionnant avec un alphabet de ruban Σ et un ensemble d'état Q, on peut définir un automate cellulaire A capable de simuler M :
On rencontre souvent une acception plus générale (mais plus informelle) de l'universalité Turing : un automate cellulaire est Turing-universel s'il est capable de simuler un système de calcul Turing-complet. Le terme simuler est rarement formalisé dans un cadre général. Le point important est que la transformation des entrées/sorties du système simulé vers des entrées/sorties du simulateur reste simple : sans cette condition, on obtient une notion dénuée d'intérêt car des automates qui ne font rien (l'identité par exemple) deviennent universels grâce à des transformations d'entrées/sorties qui font tout le calcul à leur place.
Un automate cellulaire intrinsèquement universel est un automate capable de simuler pas à pas le comportement de n'importe quel automate cellulaire de même dimension. Plus précisément, l'idée de simulation pas à pas repose sur les principes suivants :
Ainsi, par exemple, le Jeu de la vie est capable de simuler pas à pas l'automate D à 2 états (noir et rouge) qui effectue un simple décalage des états vers le sud-est :
Ainsi, pour simuler le comportement de B à partir d'une certaine configuration initiale, il suffit de fabriquer une configuration du Jeu de la vie où chaque groupe est soit rempli de cellules mortes, soit d'un planeur selon l'état de la cellule qui lui correspond dans B.
Il est remarquable qu'avec ce principe de simulation très simple certains automates soient capables de simuler n'importe quel automate cellulaire à partir de n'importe quelle configuration : c'est le cas du Jeu de la vie comme expliqué dans la . Bien entendu, pour simuler des automates avec de plus en plus d'états, un automate intrinsèquement universel utilise des groupes de cellules de plus en plus grands. En effet, avec un type de groupe de cellules fixés, il n'existe qu'un nombre fini de simulations possibles. Ainsi, quand on observe une évolution du Jeu de la vie sur un écran (aussi grand soit il), on ne voit pas tous les comportement que le Jeu de la vie est capable de simuler ; pourtant cet automate est capable de produire tous les comportements d'automate cellulaire.
Historiquement, le premier automate cellulaire construit ayant une propriété d'universalité (Turing en l'occurrence) est le constructeur universel de John von Neumann : il s'agit d'un automate de dimension 2 à 29 états qui est en outre capable de s'auto-répliquer.
Concernant la notion d'universalité intrinsèque, il faut attendre les années 70 avec les travaux de E. R. Banks qui proposa un automate cellulaire de dimension 2 à 2 états et 5 voisins. Il propose également un automate de dimension 1 intrinsèquement universel avec 5 états mais dont le voisinage est énorme.
L'exemple le plus célèbre d'automate universel est certainement le Jeu de la vie. Il fut prouvé Turing universel dans l'ouvrage Winning Ways for your Mathematical Plays. La preuve consiste à construire des morceaux de configurations qui peuvent être assemblés et qui correspondent à tous les composants nécessaires à la fabrication de circuits logiques (fils, croisements de fils, duplication, portes logiques, etc). On peut trouver une construction complète d'une machine de Turing dans le Jeu de la vie sur le site de Paul Rendell. À partir des mêmes idées, le Jeu de la vie fut plus récemment prouvé intrinsèquement universel.
Pour la dimension 1, une percée concernant l'universalité Turing a eu lieu récemment : M. Cook a prouvé que l'automate cellulaire numéro 110 était Turing-universel. Il a présenté ses idées dès 1998 à la conférence CA98, mais ce résultat n'a été (partiellement) diffusé par écrit qu'en 2002 à travers A New Kind of Science de S. Wolfram. En effet, M. Cook était employé par Wolfram Research pour travailler sur le livre A New Kind of Science et ses travaux ne furent pas publiés dans les actes de CA98 suite à une action en justice fondée sur un accord de non divulgation. La preuve complète du résultat de M. Cook a finalement été publiée dans une revue scientifique en 2004.
En revanche, on ne sait toujours pas aujourd'hui si l'automate 110 est intrinsèquement universel ou pas. Le plus petit automate de dimension 1 avec un voisinage de 3 cellules qui ait été prouvé intrinsèquement universel à ce jour comporte 4 états.
De façon générale, il est extrêmement difficile de déterminer le comportement global d'un automate cellulaire en examinant sa règle locale de transition. Ceci se traduit par des résultats d'indécidabilité touchant les propriétés les plus simples. Dans ce domaine on peut citer les travaux de Jarkko Kari qui, en utilisant de façon astucieuse les résultats déjà connus sur les pavages, a montré que les problèmes suivants étaient indécidables :
Le fait que des automates cellulaires puissent simuler n'importe quelle machine de Turing amène aussi des problèmes indécidables d'une autre nature. Par exemple, pour certains automates cellulaires, les problèmes suivants sont également indécidables :