Convergence de variables aléatoires - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Convergence en probabilité

Définition —  On dit que Xn converge vers X en probabilité si,

\forall \epsilon>0,\qquad \lim_{n\rightarrow\infty}\mathbb{P}\left(\left|X_n-X\right|\geq\varepsilon\right)=0.

La convergence en probabilité est parfois notée X_n \xrightarrow{p} X , ou encore  \operatorname{plim} X_n = X

La convergence en probabilité est utilisée dans la loi faible des grands nombres.

La convergence en probabilité implique la convergence en loi. On peut donc énoncer le théorème suivant:

Théorème —  Xn converge vers X en probabilité \Rightarrow Xn converge vers X en loi.

Il existe des conditions suffisantes de convergence en probabilité vers une constante, portant sur l'espérance et la variance des termes de la suite :

Théorème —  \lim_{n \to \infty} \operatorname{E}[X_n]=c\quad \mathbf{ et } \quad \lim_{n \to \infty}\operatorname{Var}[X_n]= 0 \Rightarrow X_n \xrightarrow{p} c .

Exemple  :

Ce théorème est très utile pour démontrer la loi faible des grands nombres de manière simple: il suffit de voir que si \left(X_i\right) est une suite de variables aléatoires indépendantes et identiquement distribuées d'espérance μ et de variance σ2 et que  \bar{X}_n =\frac{1}{n}\sum_{i=1}^{n} X_i , alors:

\operatorname{E}[\bar{X}_n]=\mu
\lim_{n\to\infty}\operatorname{Var}[\bar{X}_n]=\lim_{n\to\infty}\frac{\sigma^2}{n}=0\qquad (voir preuve sur la page variance)

Donc \bar{X}_n\xrightarrow{p}\mu

La réciproque n'est pas vraie :

  • En statistiques, un estimateur peut être biaisé mais cependant convergent !
  • Dans l'exemple suivant, la suite, d'espérance constante, converge vers une constante différente de cette espérance ; la suite des variances tend vers l'infini.
Exemple  :

Soit une suite \left(X_n\right)_{n \geq 1} de variables aléatoires telle que chaque Xn prenne pour valeurs 0 et n et que :

\mathbb{P}(X_n=n)=\frac{1}{n} , donc \mathbb{P}(X_n=0)=1-\frac{1}{n} .

On voit qu'elle converge en probabilité :  \forall \varepsilon >0, \forall n  \geq \varepsilon: \mathbb{P}(|X_n|\geq\varepsilon)= \mathbb{P}(X_n=n)=\frac{1}{n} \to 0\text{ donc }X_n \xrightarrow{p} 0 .

Cependant,  \operatorname{E}[X_n]=1 et  \operatorname{Var}[X_n]=n-1\to +\infty .

Ainsi les conditions énoncées plus haut de convergence en probabilité vers une constante ne sont pas nécessaires.

Convergence d'une fonction d'une variable aléatoire

Un théorème très pratique, désigné en anglais généralement sous le nom de Mapping theorem (en), établit qu'une fonction g continue appliquée à une variable qui converge vers X convergera vers g(X) pour tous les modes de convergence:

Théorème — Mapping theorem Soit g: \R^k \to\R^m une fonction continue en tout point d'un ensemble C tel que  \mathbb{P}(X\in C)=1  :

  • Si X_n\xrightarrow{\mathcal{L}}X\text{ alors }g(X_n)\xrightarrow{\mathcal{L}}g(X)
  • Si X_n\xrightarrow{p}X\text{ alors }g(X_n)\xrightarrow{p}g(X)
  • Si X_n\xrightarrow{p.s}X\text{ alors }g(X_n)\xrightarrow{p.s.}g(X)
Exemple  :

En statistiques, un estimateur convergent de la variance σ2 est donné par:

s^2_{n-1} \equiv \frac{1}{n-1} \sum_{i=1}^n\left(y_i - \overline{y} \right)^2

On sait alors par le continuous mapping theorem que l'estimateur   \sqrt{s^2_{n-1}} de l'écart type  \sigma =\sqrt{\sigma ^2} est convergent, car la fonction racine est une fonction continue.

Convergence en moyenne d'ordre r

Soit r > 0. On dit que Xn converge vers X en moyenne d'ordre r ou en norme Lr si E|Xn|r < ∞ pour tout n et

\lim_{n\rightarrow\infty}\mathrm{E}\left(\left|X_n-X\right|^r\right)=0 .

La convergence en moyenne d'ordre r nous dit que l'espérance de la puissance r-ième de la différence entre Xn et X converge vers zéro.

Pour r =2, on parle de convergence en moyenne quadratique

Théorème —  Xn converge vers X en norme Lr \Rightarrow X_n converge vers X en probabilité.

Théorème — Pour r > s ≥ 1, la convergence en norme Lr implique la convergence en norme Ls.

On a également le résultat suivant:

Théorème —  Xn converge vers une constante c en moyenne quadratique \Leftrightarrow \left\{\lim_{n \to \infty}\operatorname{E}[X_n]=c\quad\mathbf{et}\quad \lim_{n \to \infty}\operatorname{Var}[X_n]=0\right\} .

Page générée en 0.106 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise