La théorie d'échelle est une hypothèse supplémentaire très séduisante et bien validée par l'expérience qui consiste à supposer que la seule quantité importante est la longueur de corrélation. La longueur de corrélation ξ dépend bien sûr de ε et de h et, a priori, toutes les fonctions thermodynamiques devraient dépendre de manière compliquée de ces deux variables. L'hypothèse derrière les relations d'échelle est de supposer que la partie «intéressante» des fonctions thermodynamiques (la partie qui décrit les singularités associées à la transition) ne dépend que de ξ et pas directement de ε ou h:
Ici, F est une fonction thermodynamique (typiquement l'énergie libre ou l'enthalpie libre, selon les cas), F0 est la partie régulière, «inintéressante» de cette fonction et
De manière générale, en dimension d
De cette dernière relation, on déduit les relations d'échelle. Par exemple, utilisant la relation thermodynamique
on obtient près du point critique, en oubliant les préfacteurs et les termes réguliers
mais pour h = 0, on a
et donc, par comparaison,
Par des raisonnements similaires, on obtient une série d'égalités appelées relations d'échelle
Il y a là quatre égalités pour six inconnues (d est supposé donné). On voit donc qu'il suffit (en général) de connaître deux exposants critiques pour tous les déterminer.
Tous les exposants sont définis de manière à être positifs ou nuls.
Notez qu'il n'y a aucune raison a priori de supposer comme on l'a fait que le comportement critique d'une quantité soit le même à gauche ou à droite de Tc; on a utilisé implicitement les résultats de la théorie d'échelle présentée dans la section suivante. Si on décide de ne pas faire cette hypothèse et que l'on veut distinguer l'exposant basse température de l'exposant haute température, on ajoute habituellement un prime aux noms des exposants pour le comportement basse température; par exemple on peut écrire