Extension de Galois - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Définitions et exemples

Définitions

Dans la suite de l'article K est un corps, L une extension algébrique de K, l un élément de L et Ω la clôture algébrique de K. L est identifié à un sous-corps de Ω, ce qui ne nuit en rien à la généralité de l'exposé comme indiqué dans l'article clôture algébrique d'une extension dans le cas ou l'extension est finie.

  • Une extension est dite normale si et seulement si tout morphisme de L, laissant invariant K est un automorphisme de L.

Remarque: Un morphisme de corps est toujours injectif. Le morphisme est aussi un morphisme d'espace vectoriel car L dispose d'une structure d'espace vectoriel sur K. Donc, si L est une extension finie, alors il suffit que le morphisme ait une image incluse dans L pour qu'un argument de dimension prouve la surjectivité.

  • Une extension est dite de Galois ou galoisienne si et seulement si elle est normale et séparable.

Remarque: Une extension est dite séparable si et seulement si tout élément l admet un polynôme minimal sur K n'ayant aucune racine multiple. L'article sur les extensions algébriques évoque succinctement l'existence d'un polynôme minimal. Et si K est un corps parfait par exemple parce qu'il est de caractéristique 0 comme les nombres rationnels, les nombres réels ou les nombres complexes ou parce qu'il est fini, alors L est toujours séparable (cf Extension séparable).

Remarque: Gal(L/K) est un ensemble non vide car il contient au moins l'identité. On peut vérifier qu'il possède une structure de groupe.

Exemples

Le corps des nombres complexes est une extension de Galois du corps des nombres réels. C'est une extension simple (c’est-à-dire engendrée par le corps des nombres réels et un seul élément supplémentaire) dont le groupe de Galois est le groupe cyclique d'ordre 2.

L'extension simple engendrée par la racine cubique de deux sur le corps des rationnels n'est pas une extension de Galois. En effet, ce corps ne contient pas toutes les racines, il existe donc un morphisme de L dont l'image n'est pas L.

L'extension engendrée par la racine cubique de deux et i, le nombre imaginaire pur, est une extension de Galois. Cette extension est de dimension six et contient un groupe de Galois isomorphe au groupe de permutation de trois éléments.

Page générée en 0.099 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise