Fonction zêta de Riemann - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Applications diverses

Régularisation Zêta

Par l'intermédiaire de la fonction \zeta\, de Riemann, on a développé une méthode de régularisation des suites divergentes qui a trouvé des applications en physique, notamment dans l'effet Casimir.

Calcul d'intégrales

Outre celles déjà données précédemment, on a, pour \Re(s)>0, sous réserve de ce qui a été dit pour le prolongement par la fonction eta de Dirichlet pour les points s = 1 + 2ikπ / ln(2),

\zeta(s)=\frac1{(1-2^{1-s})\Gamma(s)}\int_0^1 \frac{|\ln u|^{s-1}}{1+u} \mathrm du.\,\!

Ou encore plus simplement pour \Re(s)>1:

\zeta(s)=\frac{(-1)^s}{\Gamma(s)}\int_0^1 \frac{(\ln u)^{s-1}}{u-1} \mathrm du.\,\!

Développement en série entière

Une formule due à Legendre donne pour |t|<1

\ln \Gamma(1+t) = -\gamma t +\sum_{n=2}^\infty \frac{\zeta(n)}{n}t^n

Suite de Farey

Fonction de comptage des nombres premiers

La fonction de comptage des nombres premiers est définie par

\pi(x)=\sum_{p \in \mathcal{P}, p\le x} 1.

La non annulation de la fonction \zeta\, sur \Re(s)=1 a pour conséquence la véracité de la conjecture de Legendre-Gauss

\pi(x)=\Big(1+o(1)\Big)\int_2^x{\frac{\mathrm du}{\ln u}}

La région sans zéro permet ensuite de majorer le reste:

\pi(x)=\int_2^x{\frac{du}{\ln u}}+\mathcal{O}\Big(x\exp(-c(\ln x)^{3/5}(\ln \ln x)^{-1/5})\Big)

Ce qui est encore bien loin de ce qu'on sait démontrer si l'hypothèse de Riemann est vraie

\pi(x)=\int_2^x{\frac{du}{\ln u}}+\mathcal{O}(\sqrt{x}\ln x).

Le nombre premier de rang n

Grâce à une étude numérique de la fonction \zeta\, , Rosser et Schoenfeld ont montré que

n\Big(\ln n + \ln \ln n -\frac32\Big) < p_n < n\Big(\ln n + \ln \ln n -\frac12\Big).

La borne inférieure a été améliorée par Dusart en 1999 qui montra, pour n >1,

n\Big(\ln n + \ln \ln n -1\Big) < p_n .

Le problème des moments

Malgré quelques progrès, on n'a pas réussi à résoudre la question de l'ordre de \zeta\, dans la bande critique. Le problème de l'ordre moyen est lui, partiellement résolu. Il prend la forme de l'estimation de l'expression

\int_1^T|\zeta(\sigma+it)|^2 \mathrm dt.\,\!

Cette estimation est donnée par un théorème général sur les séries de Dirichlet:

« Soient f(s)=\sum_{n=1}^\infty{\frac{a_n}{n^s}} et g(s)=\sum_{n=1}^\infty{\frac{b_n}{n^s}} deux séries de Dirichlet absolument convergentes, la première pour \Re(s) > \sigma_0 et la seconde pour \Re(s) > \sigma_1.

Alors, pour α > σ0 et β > σ0, on a

\lim_{T \rightarrow \infty}\frac1{2T}\int_{-T}^T f(\alpha+it)g(\beta-it) \mathrm dt=\sum_{n=1}^\infty{\frac{a_n b_n}{n^{\alpha+\beta}}}.\,\!  »

En l'appliquant à la fonction \zeta\, , on trouve immédiatement, pour σ > 1

\lim_{T \rightarrow \infty}\frac1{2T}\int_{-T}^T|\zeta(\sigma+it)|^2 \mathrm dt=\zeta(2\sigma)\,\!

et

\lim_{T \rightarrow \infty}\frac1{2T}\int_{-T}^T|\zeta(\sigma+it)|^4 \mathrm dt=\frac{\zeta^4(2\sigma)}{\zeta(4\sigma)}.\,\!

On a donc cherché à étendre ces formules pour \sigma \le 1 .

Le problème général des moments est donc l'évaluation des intégrales dépendantes de k, pour \sigma \ge 1/2

\lim_{T \rightarrow \infty}\frac1{T}\int_1^T|\zeta(\sigma+it)|^{2k} \mathrm dt.\,\!

Les résultats, désormais classiques, sont les suivants:

  • Pour le moment d'ordre 2 en σ = 1 / 2
\int_0^T|\zeta(1/2+it)|^{2} \mathrm dt=T \ln T+(2\gamma-1-\ln 2\pi)T+\mathcal{O}\Big(\sqrt{T}\ln T\Big).
  • Pour le moment d'ordre 2 en σ > 1 / 2
\lim_{T \rightarrow \infty}\frac1{T}\int_1^T|\zeta(\sigma+it)|^2 \mathrm dt=\zeta(2\sigma)\,\!
  • Pour le moment d'ordre 4 en σ = 1 / 2
\int_1^T|\zeta(1/2+it)|^4 \mathrm dt=\frac1{2\pi^2}T (\ln T)^4+\mathcal{O}\Big(T(\ln T)^3\Big).\,\!
  • Pour le moment d'ordre 4 en σ > 1 / 2
\lim_{T \rightarrow \infty}\frac1{T}\int_1^T|\zeta(\sigma+it)|^4 \mathrm dt=\frac{\zeta^4(2\sigma)}{\zeta(4\sigma)}.\,\!
  • Carlson a montré que, si l'on appelle σk la borne inférieure des σ pour lesquels on a
\lim_{T \rightarrow \infty}\frac1{T}\int_1^T|\zeta(\sigma+it)|^{2k}\mathrm dt=\mathcal{O}(1)\,\!

alors

\sigma_k \le \max\Big(1-\frac{1-\alpha}{1+\mu_k(\alpha)},\frac12,\alpha\Big)

pour 0 < α < 1. La quantité μk(α) étant l'équivalent de la fonction μ de \zeta\, pour la fonction ζk.

  • Les moments d'ordre supérieur à 4 font encore l'objet d'intenses recherches. On sait qu'il existe une constante C(k) telle que
\int_0^T|\zeta(1/2+it)|^{2k} \mathrm dt \ll T^{(k+2)/4}(\ln T)^{C(k)}

pour 2 \le k \le 6 et on conjecture qu'il en est ainsi pour les k supérieurs à 6, en particulier 8.

L'importance du problème des moments est liée à l'hypothèse de Lindelöf.

Page générée en 0.127 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise