Fonction zêta de Riemann - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Représentation sous forme de produit de facteurs primaires

D'après le théorème de factorisation de Hadamard pour une fonction méromorphe, toute fonction méromorphe s'écrit sous forme de produit de facteurs dits primaires dans lesquels apparaissent les zéros et les pôles de la fonction. La représentation sous cette forme pour \zeta\, prend la forme

\zeta(s) = \frac{e^{(\ln(2\pi)-1-\gamma/2)s}}{2(s-1)\Gamma(1+s/2)} \prod_\rho \left(1 - \frac{s}{\rho} \right) e^{s/\rho}

où le produit s'effectue sur les zéros ρ de \zeta\, et γ est la constante d'Euler-Mascheroni.

Que devient la série de Dirichlet sur l'axe Re(s) = 1 ?

La théorie des séries de Dirichlet montre, par le lemme d'Abel, que si la série converge en un point s0, elle converge pour tout s pour lequel \Re(s)> \Re(s_0). Le domaine de convergence est donc un demi-plan. Pour la série de Riemann, la série converge sur le demi-plan \Re(s)> 1 par suite du pôle en 1 (théorème de Dirichlet).

La série de Dirichlet converge-t-elle en dehors de 1, sur \Re(s)=1  ? La réponse est non. On a en effet (\Re(s)> 0)

\zeta(s)=\sum_{n=1}^N\frac1{n^s}+s\int_N^\infty{\frac{[u]-u+1/2}{u^{s+1}}}\mathrm du + \frac{N^{1-s}}{s-1}-\frac12 N^{-s}\,\!

L'intégrale est O(t / σNσ) et le dernier terme se majore par O(N − σ). Ces deux termes tendent donc vers 0 quand N tend vers l'infini. Pour l'avant-dernier terme on a

\left|\frac{N^{1-s}}{s-1}\right|=\frac{N^{1-\sigma}}{\sqrt{(\sigma-1)^2+t^2}}

et il en résulte que lorsque N tend vers l'infini, ce terme prend des oscillations de plus en plus importantes si 0 < σ < 1: la série de Dirichlet diverge. Pour s = 1 + it, le terme devient

\left|\frac{N^{it}}{it}\right|=\frac{1}{t}.

Il ne tend pas vers 0: la série diverge mais ses oscillations restent bornées par 1 / t.

Pour les séries de Dirichlet de \displaystyle\frac{\zeta'}{\zeta} , \displaystyle\ln \zeta(s) et \displaystyle \frac1\zeta , l'application de la deuxième formule de Perron montre que les deux dernières séries convergent sur l'axe 1 en dehors de s=1 tandis que la première ne converge pas sur l'axe 1.

Représentation de et fonction M de Mertens

La fonction 1/\zeta\, est étudiée conjointement avec la fonction \zeta\, . On a une représentation par une série de Dirichlet sous la formule

 \frac1{\zeta(s)}=\sum_1^\infty{\frac{\mu(n)}{n^s}}

L'application de la formule sommatoire d'Abel donne également

\frac1{\zeta(s)}= \sum_1^\infty{\frac{\mu(n)}{n^s}}=s\int_1^\infty{\frac{M(u)}{u^{1+s}}\mathrm du}\;\text{ avec }\;M(u) = \sum_{n \le u}^{\ }{\mu(n)}.\,\!

Cette formule est valable pour \Re(s)>1. On conjecture (hypothèse de Riemann) qu'elle reste vraie pour \Re(s)>1/2. On sait qu'elle est également valable pour s = 1 + it, t \neq 0 .

La théorie de M est très obscure et cela probablement pour longtemps. On ne sait que démontrer l'estimation suivante:

 M(u) = \mathcal{O}(u e^{-a(\ln u)^{3/5}}).

La relation fonctionnelle approchée

Comme on a vu dans la partie , il est possible de calculer la fonction \zeta\, dans la bande critique en utilisant une somme partielle de la série de Dirichlet. La relation fonctionnelle se traduit alors dans une relation approchée reliant les séries de Dirichlet partielles pour les exposants s et 1 − s. C'est la relation fonctionnelle approchée:

Pour 0 < σ < 1 et xy = t avec x > h > 0, y > h > 0, on a

\zeta(s)=\sum_{n \le x}\frac1{n^s}+\chi(s)\sum_{n \le y}\frac1{n^{1-s}}+\mathcal{O}(x^{-\sigma}\ln |t|)+\mathcal{O}(|t|^{1/2-\sigma}y^{\sigma-1})

avec

\chi(s)=\frac{2^{s-1}\pi^s}{\Gamma(s)} \sec\left(\frac12 s\pi\right)

On peut, avec elle, obtenir une première estimation de |\zeta(1/2+it)\,| , l'objectif étant de démontrer l'hypothèse de Lindelöf (voir plus loin).

Estimation de la fonction dans les diverses régions du plan

Le module de la fonction (u,t)\mapsto\zeta(u+it) de Riemann pour 0 \le u \le 3 et 0,1 \le t \le 200 . On notera la pointe due au pôle en 1 et la très grande irrégularité du module.

Presque périodicité

La fonction \zeta\, est presque périodique au sens de Bohr dans la région \Re(s)>1. Il en est de même de ses dérivées. La fonction 1/\zeta\, est également presque périodique sur \Re(s)>1 ainsi que ses dérivées. Par contre sur l'axe 1, la presque périodicité de Bohr cède sa place à la presque périodicité B2, au sens de Besicovitch.

La presque périodicité au sens de Bohr, sur la ligne \Re(s)=\sigma_0 , signifie qu'à \varepsilon près, la fonction se répète indéfiniment dans des intervalles de longueur L0,ε). Évidemment, plus \varepsilon est petit, plus L0,ε) est grand.

Estimations dans la région Re(s) > 1

Dans le demi-plan \Re(s)=\sigma >\sigma_0>1 la fonction \zeta(s)\, est bornée. Ses valeurs satisfont à l'inégalité

 \frac{\zeta(2\sigma)}{\zeta(\sigma)}\le|\zeta(\sigma+it)| \le \zeta(\sigma).

Elle n'a donc aucun zéro dans le demi-plan \Re(s)=\sigma >1.

Ces deux bornes sont les meilleures possibles: on montre, pour chaque valeur, qu'il existe une suite de t tendant vers l'infini ayant cette valeurs pour limite de la suite ζ(σ + it).

Charles-Jean de La Vallée Poussin démontra que pour σ > 1, on a

\zeta^3(\sigma)|\zeta(\sigma+it)|^4|\zeta(\sigma+2it)| \ge 1.

Une estimation, souvent utile, est donnée par la formule suivante pour les valeurs réelles de s supérieures à 1

\zeta(\sigma)\le \frac{\sigma}{\sigma-1}.

Elle résulte de la formule issue de la formule sommatoire d'Abel déjà donnée en remarquant que l'intégrale est toujours positive et affectée du signe -.

Estimations sur Re(s) = 1

La fonction \zeta\, est presque périodique sur le demi plan \Re(s)>1. Elle y est donc bornée sur tout demi-plan fermé strictement inclus. La présence du pôle en 1 empêche toute extension de la presque périodicité au sens de Bohr à un demi-plan plus vaste. Il est donc important de connaître le comportement de la fonction sur l'axe 1.

La méthode de Vinogradov-Korobov sur les majorations des sommes d'exponentielles permet de montrer que l'on a, pour tout t, l'inégalité

|\zeta(1+it)|< C_1 (\ln |t|)^{2/3}.\,

On connait, sans aucune hypothèse, une minoration de l'ordre des fonctions ζ(1 + it) et 1 / ζ(1 + it). On a en effet (γ = 0,577... est la constante d'Euler—Mascheroni)

 \limsup_{t \rightarrow \infty}\frac{|\zeta(1+it)|}{\ln \ln t} \ge e^\gamma

et

 \limsup_{t \rightarrow \infty}\frac{1/|\zeta(1+it)|}{\ln \ln t} \ge \frac6{\pi^2}e^\gamma

La fonction n'est donc pas bornée sur l'axe 1, même en dehors du voisinage de 1.

Estimations sur Re(s) = 0

Utilisant la formule des compléments et la relation fonctionnelle, on trouve pour t non nul

|\zeta(it)| = \sqrt{\frac{t}{\pi \sinh(\pi t)}}\sinh \left(\frac{\pi |t|}{2}\right)|\zeta(1+it)|

et de ce fait

|\zeta(it)| = \mathcal{O}\left(\sqrt{|t|}\ln^{2/3} |t|\right)

Estimations dans la région Re(s) < 0

L'application de l'équation fonctionnelle et de la formule de Stirling, et le comportement asymptotique de sin(σ + it) permet de montrer que

|\zeta(\sigma+it)| \ll \Big(\frac{t}{2\pi}\Big)^{1/2-\sigma}

pour σ < 0.

Estimation dans la bande critique

On peut estimer, uniformément dans la bande critique, \zeta(s)\, par la formule

\zeta(\sigma+it)=\sum_{n \le t}{\frac1{n^{\sigma+it}}}+\mathcal{O}\left(|t|^{-\sigma}\right).

De la méthode de Vinogradov-Korobov on déduit la majoration suivante : il existe deux constantes c et C strictement positives telles que pour tout \sigma \in [1/2,1] et t > 3 , on ait

|\zeta(\sigma+it)| \le C t^{c(1-\sigma)^{3/2}} (\ln t)^{2/3}.

Dans l'état actuel des connaissances, d'après Ford, on peut prendre C = 76,2 et c = 4,45. La relation fonctionnelle permet d'estimer le module dans la bande \sigma \in [0,1/2].

Le théorème de Valiron

Quand on regarde les applications arithmétiques de la fonction \zeta\, , on est frappé par l'usage quasi systématique des fonctions 1/\zeta\, , \zeta'/\zeta\, , ou \ln\,\zeta\, mais la fonction \zeta\, elle même apparaît rarement au numérateur. Comme la région importante est la bande critique 0 \le \Re{e}(s) \le 1 , il est important de pouvoir traverser cette bande. Or la présence éventuelle de zéros sur le chemin complique singulièrement les calculs et les estimations. Le résultat suivant sert essentiellement à majorer la fonction 1/\zeta\, sur des chemins bien répartis.

Dans sa thèse soutenue en 1914, Georges Valiron a montré qu'il existait une infinité de valeurs de t dans tout intervalle [T,T + 1] pour lesquelles on avait la minoration

|\zeta(\sigma+it)| \ge t^{-\delta}.

pour un certain δ fixe strictement positif.

On ne connaît aucune valeur de δ qui convient. On sait seulement que 0\le \delta \le 1 . Sous l'hypothèse de Riemann, on peut prendre δ aussi petit qu'on veut.

Page générée en 0.118 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise