Une catégorie est appelée un groupoïde si les objets et les flèches forment un ensemble (c'est une "petite catégorie") et si toutes les flèches sont inversibles (sont des isomorphismes). Les groupoïdes forment une catégorie dont les morphismes sont les foncteurs entre groupoïdes. Les groupes sont des groupoïdes (avec un seul objet).
Soit G un groupoïde, on définit la relation d'équivalence
A chaque espace topologique on va associer de façon fonctorielle un groupoïde πX.
Soit X un espace topologique, on prend pour ensemble d'objets πX l'ensemble sous-jacent à X. Les flèches de source x et de but y sont les classes d'homotopie des chemins (= arcs continus) de x vers y. La relation d'homotopie est compatible avec la composition des chemins et définit donc un groupoïde πX appelé le groupoïde fondamental de X. Le théorème de Van Kampen s'exprime également simplement en utilisant les groupoïdes fondamentaux.
Soit G un groupoïde, et x un objet de G (on dit aussi un point de G). La loi de composition entre les flèches de G(x,x) restreinte à ce sous-groupoïde est une loi de groupe. On note π1(G,x) ce groupe. Remarque : π1 ne définit pas un foncteur de la catégorie des groupoïdes vers la catégorie des groupes.
Le groupe fondamental est défini par π1(X,x0) = π1(πX,x0)
Le groupe fondamental est en fait le premier groupe d'homotopie, d'où l'indice 1 dans la notation π1(X).
Dans la théorie des revêtements d'un espace X, on définit la fibre d'un revêtement
Cette définition alternative ouvre la voie à la généralisation en géométrie algébrique, où la définition donnée précédemment en termes de lacets de base p ne s'applique pas naturellement. Dans cette généralisation, les revêtements étant remplacés par les morphismes étales : le groupe fondamental de l'espace pointé (X,p) est le groupe des automorphismes du foncteur fibre qui, à un morphisme étale
Cette théorie permet d'expliquer le lien entre la théorie de Galois des revêtements des surfaces de Riemann (groupe d'automorphismes…) et la théorie de Galois des corps de fonctions.
Calculer le groupe fondamental d'un espace topologique qui n'est pas simplement connexe est un exercice difficile, car il faut prouver que certains lacets ne sont pas homotopes. Le théorème de van Kampen, également appelé théorème de Seifert-Van Kampen, permet de résoudre ce problème lorsque l'espace topologique peut être décomposé en des espaces plus simples dont les groupes fondamentaux sont déjà connus. Ce théorème permet de calculer le groupe fondamental d'un éventail très large d'espaces.
En termes abstraits, ce théorème dit que si deux sous-espaces, tous les deux ouverts ou tous les deux fermés, de X contiennent le point p et ont une intersection connexe par arcs, le groupe fondamental de la réunion des deux espaces pointés en p est la somme amalgamée (dans la catégorie des groupes) des groupes fondamentaux des deux espaces, en p, somme amalgamée le long du groupe fondamental de leur intersection.
Si X est un espace topologique, on définit le cône de X comme l'espace quotient
Si f est une application continue entre deux espaces topologiques
Exemple : Si f est l'application de degré 2 dans le cercle
Le théorème du cône affirme que le groupe fondamental de C(f) est isomorphe au quotient de π1(Y) par le normalisé du sous-groupe de π1(Y) image de f.
Application : les espaces projectifs (réels)
En théorie des nœuds, on cherche à distinguer les différents nœuds (ceux qui ne sont pas homotopiques). Le groupe fondamental du complémentaire d'un nœud fournit un invariant des nœuds, qui permet de distinguer certains d'entre eux.