Trois grandes caractéristiques définissent les liaisons hydrogènes ainsi que leur interactivité :
1. Les liaisons hydrogènes sont des liens intermoléculaires dont les atomes qui la compose, respectent une certaine directionalité. Dans un réseau de ponts H, leur architecture est donc très optimisée. Cette propriété des ponts H permet à l’eau de cristalliser de façon définie pour se changer en glace. Les conditions de refroidissement affectent la géométrie du réseau cristallin de la glace. Ces interactions sont aussi responsables d’une propriété de l’eau: la densité de celle-ci à l’état liquide qui, à 4 °C, est supérieure à celle de la glace. En conséquence, la glace tend à flotter sur l’eau liquide.
2. Due à leur intensité plus faible, les liaisons hydrogènes peuvent se modifier à température ambiante, contrairement aux liaisons covalentes. En effet, à environ 27 °C, les ponts H peuvent évoluer en se modifiant par bris ou formation de nouvelles interactions. C’est de cette flexibilité qu’ont besoin, entre autres, les molécules biologiques afin d’être en constante évolution. Cette propriété est également indispensable à la solubilisation des espèces hydrophiles dans l’eau. Plusieurs molécules d’eau contiennent suffisamment de liaisons hydrogènes souples à température pièce, pour former une « cage » flexible de solvatation autour des ions afin de les empêcher de former d’autres liens avec différents ions de charge opposée.
3. Les structures secondaires des protéines, comme l’hélice alpha et le feuillet beta, sont formées grâce à un agencement spécifique de ponts H. Ces structures secondaires sont reliées les unes aux autres par des boucles de forme non définie pour former une structure tertiaire. Les hélices de l’ADN sont également maintenues par des liaisons hydrogènes. On peut donc supposer que les liaisons hydrogènes dans l’eau et dans les protéines auraient joué des rôles cruciaux dans le développement de la vie sur Terre et même de son apparition.
Nous distinguons en général trois types de liaisons hydrogène :
1. Faibles avec des enthalpies de liaison entre 1 et 4 kJ·mol−1 ;
2. Modérées avec des enthalpies entre 4 et 15 kJ·mol−1 ;
3. Fortes avec des enthalpies entre 15 et 40 kJ·mol−1.
Un exemple de liaison très forte est FH–F−1 dans KHF avec environ 212 kJ·mol−1. On peut penser que dans ce cas il vaut mieux écrire F–H–F. La distance totale entre F–H–F est de 2,49 Å seulement et il se forme un angle de 120 ° entre les différentes molécules.