Liste de critères de divisibilité - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Critère de divisibilité par 73

Pour savoir si un nombre est divisible par 73, Il suffit de séparer ce nombre par tranche de 4 chiffres en partant des unités et d'insérer alternativement des - et des + entre les tranches à partir du début du nombre en commençant par un -.

On effectue l'opération ainsi écrite et si le résultat est divisible par 73, alors le nombre considéré est divisible par 73.

Exemple

Soit le nombre 410690207551027101452.

On le sépare par tranche de quatre chiffres à partir des unités.

4 | 1069 | 0207 | 5510 | 2710 | 1452.

On intercale alternativement des + et des - à partir du début en commençant par un -.

4 - 1069 + 0207 - 5510 + 2710 - 1452

On effectue l'opération ainsi écrite.

4 - 1069 + 0207 - 5510 + 2710 - 1452 = 5110

On vérifie aisément que 5110 est divisible par 73 donc 410690207551027101452 est divisible par 73.

Critère de divisibilité par 44

Un nombre est divisible par 44 s’il est divisible à la fois par 11 et par 4.

Critère de divisibilité par 137

Pour savoir si un nombre est divisible par 137, Il suffit de séparer ce nombre par tranche de 4 chiffres en partant des unités et d'insérer alternativement des - et des + entre les tranches à partir du début du nombre en commençant par un -. On effectue l'opération ainsi écrite et si le résultat est divisible par 137, alors le nombre considéré est divisible par 137.

Exemple

Soit le nombre 2510792736157732104.

On le sépare par tranche de quatre chiffres à partir des unités.

251 | 0792 | 7361 | 5773 | 2104.

On intercale alternativement des + et des - à partir du début en commençant par un -.

251 - 0792 + 7361 - 5773 + 2104

On effectue l'opération ainsi écrite.

251 - 0792 + 7361 - 5773 + 2104 = 3151

On vérifie aisément que 3151 est divisible par 137 donc 2510792736157732104 est divisible par 137.

Critère de divisibilité par 101

Pour savoir si un nombre est divisible par 101, Il suffit de séparer ce nombre par tranches de 2 chiffres en partant des unités et d'insérer alternativement des - et des + entre les tranches à partir du début du nombre en commençant par un -. On effectue l'opération ainsi écrite et si le résultat est divisible par 101, alors le nombre considéré est divisible par 101.

Exemple

Soit le nombre 5517208188911037227.

On le sépare par tranches de 2 chiffres à partir des unités.

5 | 51 | 72 | 08 | 18 | 89 | 11 | 03 | 72 | 27.

On intercale alternativement des + et des - à partir du début en commençant par un -.

5 - 51 + 72 - 08 + 18 - 89 + 11 - 03 + 72 - 27.

On effectue l'opération ainsi écrite.

5 - 51 + 72 - 08 + 18 - 89 + 11 - 03 + 72 - 27 = 0.

0 est divisible par 101 donc 5517208188911037227 est divisible par 101.

On trouvera souvent 0 comme résultat de ce calcul si le nombre de départ est divisible par 101 car on soustrait et on additionne alternativement des nombres de deux chiffres et on a, par conséquent, une probabilité assez faible de tomber sur un multiple de 101 autre que 0.

Page générée en 0.069 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise