Le problème de placer des chiffres sur une grille de n2×n2 comprenant n×n régions est prouvé NP-complet
La résolution d'un sudoku peut être formalisée par le problème de la coloration de graphe. Le but, dans la version classique du jeu, est d'appliquer 9 couleurs sur un graphe donné, à partir d'un coloriage partiel (la configuration initiale de la grille). Ce graphe possède 81 sommets, un par cellule. Chacune des cases du sudoku peut être étiquetée avec un couple ordonné (x, y), où x et y sont des entiers compris entre 1 et 9. Deux sommets distincts étiquetés par (x, y) et (x’, y’) sont reliés par une arête si et seulement si :
Une grille solution est aussi un carré latin. La relation entre les deux théories est désormais complètement connue, depuis que D. Berthier a démontré, dans "The Hidden Logic of Sudoku", qu'une formule logique du premier ordre qui ne mentionne pas les blocs (ou régions) est valide pour le Sudoku si et seulement si elle est valide pour les carrés latins.
Il y a notablement moins de grilles solutions que de carrés latins, car le Sudoku impose des contraintes supplémentaires (Voir ci dessus point 4 : nombre de grilles complètes possibles)
Le nombre maximum de dévoilés sans qu'une solution unique n'apparaisse immédiatement, peu importe la variante, est la taille de la grille moins 4 : si deux paires de candidats ne sont pas inscrits et que les cellules vides occupent les coins d'un rectangle, et que exactement deux cellules sont dans une région, alors il existe deux façons d'inscrire les candidats. L'opposé de ce problème, à savoir le nombre minimum de dévoilés pour garantir une solution unique, est un problème non résolu, bien que des enthousiastes japonais aient découvert une grille 9×9 sans symétrie qui contient seulement 17 dévoilés (pour en savoir plus, voir (en). Un résultat publié en 2007, dévoile que pour qu'un sudoku ait une solution unique, il est nécessaire que 8 des 9 chiffres soit dévoilés. [2] et (en) [3]), alors que 18 est le nombre minimum de dévoilés pour les grilles 9×9 symétriques.
Les grilles correctement réalisées doivent avoir une et une seule solution. Une grille est dite irréductible ou minimale si elle est valide et si le retrait d'un chiffre supplémentaire entraîne son invalidité (i.e. elle n'admet plus de solution unique). Il est possible de créer des grilles minimales avec un nombre différent de valeurs initiales. Cette section décrit les propriétés relatives à ce problème.
Le Sudoku classique avec une grille de 9x9, soit 81 cases, est pour l'instant limité par une borne inférieure de 17 valeurs initiales, ou 18 quand les positions des chiffres initiaux peuvent être tournées de 90°. Il existe une conjecture qui stipule que cette borne de 17 est la meilleure possible, mais il n'existe pas de preuve formelle, seulement une recherche exhaustive avec des grilles aléatoires :
Des contraintes supplémentaires (avec des Sudoku dont les régions font 3×3) changent le nombre de valeurs minimales nécessaires pour aboutir à une solution unique :
Les Du-sum-oh remplacent les régions de 3×3 (ou plus généralement L×C) par des régions irrégulières avec une taille fixe. Bob Harris a prouvé qu'il était toujours possible de créer des du-sum-ohs avec N-1 valeurs initiales sur une grille de N par N. Il a donné plusieurs exemples.
Dans le Samunamupure ou Killer Sudoku, les régions ont non seulement des formes irrégulières mais également des tailles différentes. Les règles d'unicité des nombres dans les lignes, régions et colonnes s'appliquent toujours. Les indications initiales sont données sous la forme de sommes de valeurs dans les régions (par exemple, une région de 4 cellules avec une somme de 10 contiendra les chiffres 1, 2, 3, 4 selon un certain ordre). Le nombre minimal de valeurs nécessaires pour débuter la grille n'est pas connue, ni conjecturée.
Une variante proposée par Miyuki Misawa remplace les sommes par des relations : les indications sont des symboles =, <, >, montrant les valeurs relatives pour certaines régions adjacentes. Un exemple avec seulement 8 relations est donné, mais on ne sait pas si ce nombre est la borne inférieure.