Opérateur adjoint - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Espace de Banach

Comparer avec l'article anglais en:Unbounded operator

De nombreuses propriétés, valables pour les Hilbert peuvent être généralisées. L'analyse de l'adjoint d'un opérateur dans le cadre plus général des Banach possède des analogies certaines avec le cas précédent. Les techniques utilisées sont néanmoins un peu différentes. Dans ce paragraphe E et F désignent des Banach et a un opérateur non borné de E dans F.

Le terme opérateur non borné désigne une application linéaire sans précision sur le caractère continu de l'opérateur. Le mathématicien Haïm Brezis précise : Il peut donc arriver qu'un opérateur non borné soit borné. La terminologie n'est pas très heureuse, mais elle est communément répandue et elle n'engendre pas de confusion !

Existence et unicité

Comme précédemment, tout opérateur a admet un unique adjoint. Plus précisément :

  • Pour tout opérateur non borné a de D(a) dans F il existe un unique adjoint, et l'adjoint est linéaire.

La question se pose alors de savoir si D(a*) est dense dans le dual de F.

  • Si a est un opérateur fermé, alors pour la topologie faible du dual de F, D(a*) est dense dans le dual de F. Si de plus F est reflexif alors D(a*) est dense pour la topologie usuelle.

Continuité de l'adjoint

Le théorème du graphe fermé indique qu'un opérateur a est continu si et seulement si son graphe est fermé. Le graphe de a est le sous-espace vectoriel de ExF formé des points (x, a(x)) quand x parcourt D(a). Un opérateur ayant un graphe fermé est dit fermé, ce qui revient à dire borné ou continue. Pour une raison de style, il est plus fréquent de parler d'un opérateur non borné fermé que d'un opérateur non borné borné, même si les significations sont identiques.

  • Un opérateur non borné a à domaine dense possède un adjoint fermé.

Orthogonalité

Si a est fermé et possède un domaine dense, alors les propriétés d'orthogonalités correspondant à la situation hilbertienne restent vraies :

  • Le noyau de a est égal à l'orthogonal de l'image de a* et le noyau de a* est égal à l'orthogonal de l'image de a.
 \text{Ker}\,a = (\text{Im}\,a^*)^{\bot}\quad \text{et}\quad \text{Ker}\,a^* = (\text{Im}\,a)^{\bot}

La situation diffère légèrement pour l'orthogonal des noyaux.

  • L'orthogonal du noyau de a contient l'adhérence de l'image de l'adjoint de a et l'orthogonal du noyau de l'adjoint de a est l'adhérence de l'image de a.
 (\text{Ker}\,a)^{\bot} \supset \overline{\text{Im}\,a^*}\quad \text{et}\quad (\text{Ker}\,a^*)^{\bot} = \overline{\text{Im}\,a}

Si l'espace E est réflexif, alors l'orthogonal du noyau de a est égal à l'adhérence de l'image de a*, dans le cas contraire, l'égalité n'est pas assurée.

Avec les hypothèse de fermeture et de densité du domaine de a :

  • Les quatre propriétés suivantes sont équivalentes :
(1) L'image de a est fermée.
(2) L'image de l'adjoint de a est fermée.
(3) L'image de a est l'orthogonal du noyau de l'adjoint.
(4) L'image de l'adjoint est l'orthogonal du noyau de a.

Surjectivité

Conséquence de la continuité de a

Page générée en 0.128 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise