Dès 1915, Einstein utilisait un principe de substitution pour passer des équations de la relativité restreinte à celle de la relativité générale, et pour s'aider à déterminer les équations du champ de gravitation.
Par ailleurs, le terme de « principe de correspondance » est également repris dans un sens plus philosophique, selon lequel une nouvelle théorie scientifique englobant une théorie précédente doit pouvoir expliquer tout ce que cette dernière expliquait.
Par exemple, la théorie de la relativité restreinte satisfait ce principe : à des vitesses plus faibles devant celle de la lumière, on retrouve la mécanique classique. De même, la relativité générale donne la mécanique classique pour des champs gravitationnels faibles.
Einstein comprit qu'en relativité restreinte la dérivation suivant un axe de coordonnée est remplacée, en relativité générale, par la dérivation covariante qui consiste à dériver suivant le substitut à la notion de droite dans un espace courbe : le chemin suivi par le mouvement inertiel, ce que l'on appelle une géodésique.
C'est une application du principe d'équivalence et du principe de relativité : les équations de la relativité restreinte sont vues comme des équations de tenseurs dans un référentiel inertiel (en mouvement suivant une géodésique, ou encore en chute libre dans le champ de gravitation), et pour retrouver les équations dans les autres référentiels, il suffit de remplacer chaque tenseur utilisé par son expression générale en relativité générale, et chaque dérivée suivant une droite du référentiel d'inertie, donc cette droite est une géodésique, par l'expression de la dérivation suivant cette géodésique.
Pour retrouver formellement les équations de la relativité générale à partir des équations de la relativité restreinte, il faut :
On obtient alors l'équation de la relativité générale qui concerne le même sujet que celui traité en relativité restreinte.
Bien sûr, on ne peut obtenir ainsi les équations du champ de gravitation qui ne peuvent être traitées en relativité restreinte. Toutefois, ce fut un guide précieux :
On montre ici comment l'expression relativiste de l'énergie cinétique, dans le cadre de la relativité restreinte, est approximativement égale à l'énergie cinétique classique quand la vitesse est très inférieure à celle de la lumière.
On part de l'équivalence célèbre d'Einstein :
Quand la vitesse par rapport à l'observateur est non nulle, l'énergie dépasse l'énergie au repos d'une quantité définie comme étant l'énergie cinétique :
On retrouve bien l'expression classique de l'énergie cinétique.