Géodésique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En géométrie, une géodésique désigne le chemin le plus court, ou l'un des plus courts chemins s'il en existe plusieurs, entre deux points d'un espace pourvu d'une métrique (un moyen de mesurer les distances). Lorsque l'on change cette notion de distance, les géodésiques de l'espace peuvent prendre une allure très différente.

Géode V 3 1.gif

Introduction

A l'origine, le terme géodésique vient de géodésie (du grec gaïa « terre » et daiein « partager, diviser »), la science de la mesure de la taille et de la forme de la Terre. La géodésique désignait donc pour des géomètres le chemin le plus court entre deux points de l'espace (sous entendu géographique).

La transposition aux mathématiques fait de la géodésique la généralisation de la notion de « ligne droite » aux « espaces courbes ». La définition de la géodésique dépendant donc du type d'« espace courbe », l'acceptation précédente n'y est plus vraie que localement dans le cas où cet espace dispose d'une métrique.

Le chemin le plus court entre deux points dans un espace courbe peut être obtenu en écrivant l'équation de la longueur de la courbe, et en cherchant la valeur minimale pour cette valeur. De manière équivalente, on peut définir une autre valeur, l'énergie de la courbe et chercher à la minimiser, ce qui aboutit aux mêmes équations pour une géodésique. Intuitivement, on peut chercher à comprendre cette seconde formulation en imaginant une bande élastique tendue entre deux points, qui, si elle suivait la géodésique, aurait une longueur minimale et donc une énergie minimale.

Les géodésiques sont souvent rencontrées dans le cadre de l'étude de la géométrie riemannienne et plus généralement des géométries métriques. En physique, les géodésiques décrivent le mouvement des particules libres, c'est-à-dire lorsqu'elles ne sont pas soumises à une force externe (autre que la gravitation dans le cadre de la relativité générale); en particulier, le chemin suivi par un rocher en chute libre, un satellite en orbite ou la forme d'une orbite planétaire sont tous décrits par des géodésiques de la théorie de la relativité générale. Par contre la trajectoire d'un spationaute en route pour la Lune dans une fusée n'est pas une géodésique en raison de la force de poussée exercée par le moteur de l'engin.

Applications géométriques

Géométrie métrique

En géométrie métrique, une géodésique est une courbe suivant partout localement la distance minimale. Plus précisément, une courbe paramétrique γ: IM depuis l'intervalle unité I vers l'espace métrique M est une géodésique s'il existe une constante v ≥ 0 telle que pour tout  t \in I il existe un voisinage J de t dans I tel que pour tous t_1, t_2 \in J l'on ait :

d\bigl(\gamma(t_1),\gamma(t_2)\bigr)=v|t_1-t_2|~ .

Ceci généralise la notion de géodésique pour les variétés riemanniennes. Cependant, en géométrie métrique, les géodésiques considérées sont presque toujours équipées d'une paramétrisation naturelle, ce qui se définit par le fait que v = 1 et

d\bigl(\gamma(t_1),\gamma(t_2)\bigr)=|t_1-t_2|~ .

Géométrie (pseudo-)riemannienne

Sur une variété pseudo-riemannienne, une géodésique M est définie par une courbe paramétrée régulière γ(t) qui transporte parallèlement son propre vecteur tangent.

Pour comprendre intuititvement ce que cela signifie, on peut imaginer un avion de ligne volant à altitude constante autour de la Terre, allant de Paris à Pékin par le chemin le plus court. Du point de vue des passagers, la direction de l'avion est en permanence la même. À la fin du voyage, les passagers n'ont jamais ressenti d'accélération qui leur aurait fait changer de direction : d'après eux ils ont pris le chemin le plus court. Néanmoins, si on considère le référentiel centré sur la Terre, le vecteur décrivant la vitesse de l'avion a changé de direction au court du temps pour suivre la forme de la planète. Cette modification du vecteur vitesse de l'avion de façon adaptée à la géométrie dans laquelle il se déplace correspond précisément à ce qu'on entend par transport parallèle.

En termes mathématiques, ceci s'exprime de la manière suivante, avec γ(λ) la courbe paramétrée représentant la géodésique et en notant par

\frac{{\rm d} \gamma(\lambda)}{{\rm d}\lambda} =V=V^{\mu}\frac{\partial}{\partial x^{\mu}}

le vecteur tangent à la courbe (le vecteur vitesse si on identifie λ avec le temps dans le référentiel du voyageur) dans le référentiel correspondant aux coordonnées xμ

 \frac{{\rm d}}{{\rm d}\lambda} V = \nabla_{V}V = V^{\mu}\nabla_{\mu} V = 0

où ∇ est la connexion de Levi-Civita sur M (équivalente à la dérivée covariante).

A partir de cette définition et de l'expression en composant de la connexion de Levi-Civita, on obtient l'équation géodésique :

 \frac{\mathrm d^2 x^\alpha}{\mathrm d \lambda ^2} + {\Gamma^{\alpha}}_{\gamma \beta} \frac{\mathrm dx^\gamma}{\mathrm d \lambda} \frac{\mathrm dx^\beta}{\mathrm d \lambda} = 0

Les géodésiques sont donc, dans la variété, des courbes paramétriques répondant à cette équation différentielle. Les Γαγβ sont les symboles de Christoffel, qui dépendent directement du tenseur métrique g : ils représentent la déformation infinitésimale de l'espace par rapport à un espace plat.

Pour comprendre intuitivement la première formulation, l'opérateur V^{\mu}\nabla_{\mu} représente l'accélération le long de γ(λ). L'équation géodésique exprime donc que l'accélération du vecteur tangent à la courbe le long de la courbe est nulle.

L'équation géodésique est également l'équation d'Euler-Lagrange associée à l'énergie de la courbe :

 E(\gamma) = \int g_{\gamma(\lambda)}(V(\lambda),V(\lambda))d\lambda

Comme le Lagrangien L(λ,γ,V) = gγ(V,V) est indépendant du temps λ, le Hamiltonien se conserve le long des géodésiques. Or ici le Hamiltonien est égal au Lagrangien, lui-même égal au carré de la norme de la vitesse. On conclut que la vitesse se conserve le long des géodésiques, en accord avec leur absence d'accélération.

Page générée en 0.271 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise