Si
Étant donné une telle matrice, une couverture exacte est une sélection de lignes telles que chaque colonne possède un 1 dans exactement une des lignes sélectionnées.
En d'autres termes, une couverture exacte est une sélection de lignes dont la somme est une ligne qui ne contient que des 1.
Si dans l'exemple 2 ci-dessus, nous représentons les 6 ensembles dans
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
A | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
B | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
D | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
E | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
F | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Comme dans l'exemple 2, la sélection
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
B | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
D | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
F | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Beaucoup de problèmes peuvent être réduits à des problèmes de la couverture exacte, qui peuvent alors être résolus avec des techniques comme les liens dansants.
Par exemple, le problème de pavage d'une surface donnée avec des pentominos, le problème des huit reines, et la résolution des Sudokus peuvent tous être vus comme des problèmes de la couverture exacte et être résolus avec les liens dansants.
Le problème de pavage d'une surface donnée avec des pentominos est un exemple de problème de la couverture exacte.
Par exemple, voir le site en anglais Solving Pentomino Puzzles with Backtracking.
Le problème des huit reines est un exemple de problème de la couverture exacte.
Le problème dans les Sudokus est d'assigner une certaine quantité de nombres (ou chiffres, valeurs, symboles) aux cellules (ou carrés) dans une grille tout en satisfaisant certaines contraintes.
Dans les variantes standard d'un Sudoku 9×9, il existe quatre sortes de contraintes :
Bien que la première contrainte semble triviale, il est cependant nécessaire de s'assurer qu'il n'y aura qu'un seul nombre par cellule.
La résolution d'un Sudoku est un problème de la couverture exacte.
Plus précisément, résoudre un Sudoku est un problème d'ensemble intersectant, ce qui est équivalent à un problème de la couverture exacte (comme dans l'exemple 4 ci-dessus), lorsqu'il est vu comme un problème de sélection de possibilités tel que chaque ensemble de contraintes contient (i.e., est atteint par) exactement une possibilité sélectionnée. Dans la notation ci-dessus pour le problème de la couverture exacte (généralisé), X est l'ensemble des possibilités, Y est un ensemble d'ensembles de contraintes, et R est la relation binaire "est contenu dans".
Chaque assignation possible d'un nombre particulier à une cellule particulière est une possibilité (ou un candidat). Lorsque le Sudoku est joué avec un crayon et un papier, les possibilités sont souvent appelées des marques de crayon.
Dans les variantes standard d'un Sudoku 9×9, dans lequel chacune des cellules 9×9 est assignée un des 9 nombres, il y a 9×9×9 = 729 possibilités. En utilisant une notation évidente pour les lignes, colonnes et nombres, les possibilités peuvent être étiquetées comme ceci : R1C1#1, R1C1#2, …, R9C9#9.
Le fait que chaque sorte de contrainte implique exactement une chose est ce qui fait que le Sudoku est un problème d'ensemble intersectant exact. Les contraintes peuvent être représentées par les ensembles de contraintes. Le problème est de sélectionner les possibilités telles que chaque ensemble de contraintes contient (c.a.d., est atteint par) exactement une possibilité sélectionnée.
Dans les variantes standard d'un Sudoku 9×9, il existe quatre sortes d'ensembles de contraintes correspondant aux quatre sortes de contraintes :
Puisqu'il existe 9 lignes, 9 colonnes, 9 boîtes et 9 nombres, il existe 9×9=81 ensembles de contraintes ligne-colonne, 9×9=81 ensembles de contraintes ligne-nombre, 9×9=81 ensembles de contraintes colonne-nombre et 9×9=81 ensembles de contraintes boîte-nombre : 81+81+81+81=324 ensembles de contraintes en tout.
En bref, les variantes standard d'un Sudoku 9×9 est un problème d'ensemble intersectant exact avec 729 possibilités et 324 ensembles de contraintes. Le problème peut donc être représenté par une matrice 729×324.
Bien qu'il soit difficile de présenter la matrice 729×324 entière, la nature générale de la matrice peut être vue à partir de plusieurs captures :
|
|
|
|
La matrice 729×324 complète est disponible sur le site de Bob Hanson (en anglais).
Notez que l'ensemble des possibilités RxCy#z peut être arrangé comme un cube 9×9×9 dans un espace à 3 dimensions de coordonnes x, y et z. Ainsi, chaque ligne Rx, colonne Cy, ou nombre #z est une « tranche » 9×9×1 de possibilités. Chaque boîte Bw est un « tube » 9x3×3 de possibilités. Chaque ensemble de contraintes ligne-colonne RxCy, ensemble de contraintes ligne-nombre Rx#z, ou ensemble de contraintes colonne-nombre Cy#z est une « bande » 9x1×1 de possibilités. Chaque ensemble de contraintes boîte-nombre Bw#z est un « carré » 3x3×1 de possibilités. Et chaque possibilité RxCy#z est un « mini-cube » 1x1×1 consistant en une unique possibilité.
De plus, chaque ensemble de contraintes ou possibilité est l'intersection des ensembles de composants. Par exemple, R1C2#3 = R1 · C2 · #3, où "·" désigne l'ensemble d'intersection.
Bien que d'autres variations de Sudoku ont des nombres différents de lignes, colonnes, nombres et/ou différentes sortes de contraintes, ils impliquent tous des possibilités et des ensembles de contraintes, et ainsi peuvent être vus comme des problèmes d'ensembles intersectants exacts.