Pour transporter de l'énergie à haute fréquence d'un point à un autre, on n'utilise pas une rallonge électrique ordinaire mais une ligne de transmission aux caractéristiques appropriées. Une ligne peut être constituée soit par un guide d'onde, tube métallique à l'intérieur duquel se propage l'onde, soit par une ligne en "mode TEM" , constituée en général par deux conducteurs parallèles. La ligne TEM est composée de deux conducteurs électriques parallèles séparés par un diélectrique, très bon isolant aux fréquences utilisées (air, téflon polyéthylène...). Si l'un des conducteurs est entouré par l'autre, on parle alors de ligne coaxiale.
Une ligne de transmission est censée ne pas rayonner. Cette condition est en pratique satisfaite avec un câble coaxial. Avec une ligne bifilaire, la distance entre les deux conducteurs doit être très petite par rapport à la longueur d'onde, et aucun obstacle ne doit se situer à proximité des deux conducteurs.
Aux hyperfréquences, on utilisera un guide d'onde qui, à longueur égale, aura moins de pertes qu'un câble coaxial.
Un générateur relié à une charge à l'aide d'une ligne va provoquer dans chacun des deux conducteurs de la ligne l'établissement d'un courant électrique et la formation d'une onde se déplaçant dans le diélectrique à une vitesse très grande. Cette vitesse est inférieure à la célérité de la lumière mais dépasse fréquemment 200 000 km/s, ce qui implique que, pour une fréquence donnée, la longueur de l'onde dans la ligne est plus petite que dans l'espace.
(longueur d'onde = célérité dans le milieu / fréquence )
Dans une ligne coaxiale, la vitesse de propagation est la même quelle que soit la fréquence, on dit que la ligne n'est pas dispersive.
Le problème est différent dans le cas de la propagation dans un guide d'ondes: Bien que la vitesse de propagation de l'énergie soit toujours inférieure à celle de la lumière,celle-ci dépend de la fréquence, et on constate par ailleurs que la longueur d'onde dans le guide est plus grande que dans l'air : Un guide d'onde est dispersif. Ce phénomène peut poser des problèmes dans le cas d'émissions large bande numériques: si le signal transporté est large bande, les fréquences aux deux extrémités du spectre du signal n'arriveront pas en même temps au récepteur , et il y aura distorsion ( distorsion de temps de propagation de groupe)
Lorsque la ligne est parfaitement adaptée à la charge, condition remplie lorsque l'impédance d'entrée de la charge est égale à l'impédance caractéristique de la ligne, cette dernière est parcourue seulement par des ondes progressives. Dans ce cas idéal la différence de potentiel entre les conducteurs et le courant qui circule dans ceux-ci ont la même valeur quel que soit l'endroit où la mesure est effectuée sur la ligne.
Si la condition évoquée précédemment n'est pas remplie, ce qui arrive si l'impédance de la charge est différente de l'impédance caractéristique de la ligne, Une partie de l'énergie qui arrive sur la charge va être réfléchie, et une onde va se propager dans l'autre sens. La ligne va alors être le siège d'ondes stationnaires, interférences entre l'onde directe et l'onde réfléchie. La tension mesurable entre les deux fils ne sera plus constante sur toute la longueur de la ligne et vont apparaître :
Ce type de fonctionnement est généralement redouté si le taux d'ondes stationnaires (TOS) est élevé. Les surtensions correspondant aux ventres de tension peuvent endommager l'émetteur, voire la ligne. Les pertes par réflexion sur la charge sont élevées, et l'énergie émise par la source va revenir sur celle-ci.
On peut utiliser des lignes en court-circuit ou ouvertes pour réaliser des résonateurs et des filtres. Le TOS élevé signifiera un Q élevé pour le résonateur.
La résistance électrique (non nulle) des conducteurs constituant la ligne et l'isolement (non infini) du diélectrique, provoquent un affaiblissement de l'amplitude de l'onde progressive parcourant la ligne.
Ces pertes ont un double inconvénient :
Les pertes en ligne s'expriment en dB/m (décibel/mètre de longueur) et dépendent de nombreux facteurs :
Exemple : un câble coaxial très commun (ref. RG58A) d'une longueur de 30 mètres présente 6dB de pertes à 130MHz.A cette fréquence, si l'on applique une puissance de 100 watts à l'entrée de cette ligne on ne retrouvera que 25 watts à son extrémité, avec une perte de 6dB. À la fréquence de 6MHz on retrouvera 95 watts et la perte n'est plus que de 1 décibel.
Les pertes, si elles sont exprimées en décibels, sont proportionnelles à la longueur de la ligne.