Quaternion - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

La notation (a, V)

Le quaternion Q = a\cdot 1 + b\cdot i + c\cdot j + d\cdot k\, peut être décomposé (et de façon unique) en un couple formé du réel a\, et du vecteur \vec V de \mathbb R^3 dont les coordonnées sont (b,c,d).

On écrit :  Q = (a\ ,\ \vec V)\, .

Cette notation permet de définir la somme et le produit de la façon suivante :

\begin{matrix}Q_1 + Q_2 &=& (a_1\ ,\ \vec V_1) + (a_2\ ,\ \vec V_2) = (a_1+a_2\ , \vec V_1 + \vec V_2) \\Q_1 ** Q_2 &=& (a_1 a_2 - \vec V_1 \bullet \vec V_2\ ,\ a_1 \vec V_2 + a_2 \vec V_1 + \vec V_1 \wedge \vec V_2)\,\end{matrix}


Elle permet aussi de re-définir ou définir les 3 notions suivantes :

d'où l'on déduit :

  • la norme d'un quaternion : \|Q\| = \sqrt{Q\bullet Q} = \sqrt{Q ** Q^*} = (Q ** Q^*)^\frac{1}{2} = (a^2 + \vec V\bullet\vec V)^\frac{1}{2} = (a^2+\|\vec V\|^2)^\frac{1}{2} \,


nota :


Soit à présent un quaternion Q = (a\ ,\ \vec V)\, quelconque ; notons q = \|Q\|\, et v = \|\vec V\|\, . Si le réel v\, positif n'est pas nul, le réel q\, ne l'est pas non plus et l'on peut donc toujours écrire :

Q = q \cdot \left(\frac{a}{q}\ ,\ \frac{1}{q}\cdot \vec V\right) = q \cdot \left(\frac{a}{q}\ ,\ \frac{v}{q}\frac{1}{v}\cdot  \vec V\right)\,

Or \frac{1}{v}\cdot  \vec V est un vecteur normé et l'on peut écrire : q^2 = a^2 + v^2\, , ou encore : \left (\frac{a}{q}\right )^2 + \left (\frac{v}{q}\right )^2= 1 .

Il en résulte qu'il existe :

  • un angle \varphi\, (dont le cosinus et le sinus valent respectivement \frac{a}{q}\, et \frac{v}{q}\, ) et
  • un vecteur normé \vec U = \frac{1}{v}\cdot \vec V

qui sont tels que l'on puisse écrire le quaternion  Q \, (de vecteur \vec V non nul) sous la forme :

Q = q \left (\cos \varphi\ , \ \sin \varphi \cdot \vec U \right ) = \left (q\cos \varphi\ , \ q\sin \varphi \cdot \vec U \right )\,

Cette façon d'écrire un quaternion est importante : les termes du couple, q\cos \varphi\, et q\sin \varphi \cdot \vec U\, , sont en effet respectivement le produit scalaire et le produit vectoriel de deux vecteurs \vec V_1 et \vec V_2 orthogonaux à \vec V , ces 2 vecteurs faisant entre eux un angle égal à \varphi\, . Et cette écriture permet de construire la multiplication des quaternions grâce à la composition des similitudes de \mathbb R ³ comme on peut le voir en cliquant ici

Correspondance entre quaternion unitaire et rotation vectorielle

On peut démontrer que le transformé \vec V' = \mathbf R_{\left[2\varphi, \vec N\right]}(\vec V) \, de tout vecteur \vec V\, quelconque (de l'espace euclidien de dimension 3) dans la rotation d'angle 2\,\varphi\, et d'axe \vec N\, ( \vec N\, étant un vecteur normé) peut être calculé grâce au produit de quaternions suivants :

(0,\ \vec V') = \left(0,\ \mathbf R_{\left[2\varphi, \vec N\right]}(\vec V)\right) = (\cos \varphi,\ \sin \varphi\ \vec N) ** (0,\ \vec V) ** (\cos \varphi,\ -\sin \varphi\ \vec N)

(\cos \varphi,\ \sin \varphi\ \vec N) et (\cos \varphi,\ -\sin \varphi\ \vec N) sont deux quaternions unitaires conjugués et où (0,\ \vec V) et (0,\ \vec V') sont des quaternions dont la composante scalaire est nulle.

On peut aussi écrire cette transformation avec la notation Q = a\cdot 1 + b\cdot i + c\cdot j + d\cdot k\, . Si la rotation est autour d'un axe orienté selon le vecteur \vec N\, de coordonnées (x, y,z) (le vecteur étant normé) et d'angle 2\,\varphi , le quaternion associé vaut :

Q = \cos \varphi \cdot 1 + x \sin \varphi \cdot i+ y \sin \varphi \cdot j+ z \sin \varphi \cdot k

Double produit de quaternions

De même que l'on peut calculer un double produit vectoriel, il est possible de calculer un double produit de quaternions.

Notations matricielles

De même qu'il est possible de mettre en correspondance le nombre complexe z = a + i b\, avec la matrice : \begin{bmatrix}a & -b \\b & a\end{bmatrix}\, , il est possible de faire correspondre le quaternion Q = a + b i + c j + d k\, avec la matrice complexe suivante :

\begin{bmatrix}a-id & -b+ic \\ b+ic & a+id\end{bmatrix}\,

ou encore avec la matrice réelle suivante :

\begin{bmatrix}\quad a&\quad -b &\quad -c &\quad -d\\                      \quad b&\quad  a &\quad -d &\quad c\\                       \quad c&\quad  d &\quad a  &\quad -b\\                      \quad d&\quad -c &\quad b  &\quad a        \end{bmatrix}\,

Il existe plusieurs représentations matricielles d'un quaternion. La matrice précédente en est une. Celle qui suit est plus souvent utilisée. Ainsi, la matrice réelle créée à partir d'un quaternion s'écrit de cette façon (en gardant q=a+ib+jc+kd):

Si le quaternion unitaire représente une rotation depuis l'origine, on peut le représenter à l'aide d'une matrice 3x3

\begin{bmatrix}\quad 1-2c^2-2d^2&\quad 2bc-2da& 2bd+2ca\\\quad 2bc+2da& \quad1-2b^2-2d^2& \quad2cd-2ba \\\quad 2bd-2ca&\quad2cd+2ba&\quad 1-2b^2-2c^2\end{bmatrix}\,

Avec ces équivalences, la somme et le produit de deux quaternions correspondent respectivement à la somme et au produit des matrices qui leur correspondent.

Remarque :

La matrice complexe \begin{bmatrix}a-id & -b+ic \\ b+ic & a+id\end{bmatrix}\, peut encore s'écrire sous la forme :

a\ \begin{bmatrix}1&0\\0&1\end{bmatrix} + b\ \begin{bmatrix}0&-1\\1&0\end{bmatrix} + c\ \begin{bmatrix}0&i\\i&0\end{bmatrix} + d\ \begin{bmatrix}-i&0\\0&i\end{bmatrix}

où les 4 matrices : E = \begin{bmatrix}1&0\\0&1\end{bmatrix} , I = \begin{bmatrix}0&-1\\1&0\end{bmatrix} , J = \begin{bmatrix}0&i\\i&0\end{bmatrix} et K = \begin{bmatrix}-i&0\\0&i\end{bmatrix} sont les matrices complexes qui correspondent aux quatre quaternions-unités 1, i, j et k évoquées dans la des quaternions. Il est à noter que la physique quantique utilise régulièrement cette décomposition des quaternions en combinaisons linéaires de matrices 2x2 (dans le traitement du spin en particulier) qui portent alors le nom de matrices de Pauli.

Page générée en 0.126 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise