L'analyse du comportement des objets sous l'effet des rotations nécessite de prendre en compte la structure mathématique de groupe formé par celles-ci. À un objet se transformant sous les rotations est alors associée une représentation de groupe. Deux objets ayant des propriétés de symétrie similaires seront donc associés à des représentations équivalentes du groupe des rotations. De ce point de vue, le spin n'est rien d'autre qu'un nombre qui permet de classifier les différentes représentations irréductibles non-équivalentes du groupe des rotations.
Au moment cinétique orbital d'une particule de charge q et de masse m est associé un moment magnétique orbital :
Le facteur q / 2m est appelé rapport gyromagnétique. De même, on associe à une particule de charge q, de masse m, et de spin donné un moment magnétique de spin :
où g est un nombre sans dimension, appelé facteur de Landé (1921). Ce nombre varie selon la nature de la particule : on a approximativement g = 2 pour l'électron, g = 5,586 pour le proton, et
Pour l'électron, on a les valeurs suivantes :
L'équation de Dirac prédit pour l'électron un facteur de Landé exactement égal à : g = 2. Or, la valeur expérimentale admise en 2005 vaut :
Il existe donc un écart, décelé pour la première fois en 1947 dans la structure hyperfine de l'hydrogène et du deutérium : on parle alors du moment magnétique anomal de l'électron. La théorie quantique des champs du modèle standard permet de rendre compte de cette anomalie avec une très grande précision.