Téléportation quantique
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Téléportation quantique en variables continues

Aujourd’hui, ce protocole est implémenté en optique quantique dans le régime des variables dites continues par opposition au régime des variables discrètes abordé précédemment qui se caractérise entre autres par le comptage des photons. En effet, dans le régime des variables continues, on ne peut plus distinguer les photons individuellement : ils arrivent par « bouffées » contenant un très grand nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) de photons  \thicksim 10^{23} rendant l’approche par comptage complètement (Le complètement ou complètement automatique, ou encore par anglicisme complétion ou autocomplétion, est une fonctionnalité informatique permettant à...) inimaginable !

La première réalisation expérimentale ( En art, il s'agit d'approches de création basées sur une remise en question des dogmes dominants tant sur le plan formel, esthétique, que sur le plan culturel et politique. En science, il...) d’une telle téléportation (On nomme téléportation (terme de 1934) le transfert d'un corps dans l'espace sans parcours physique des points intermédiaires entre départ et arrivée. Le thème a été traité...) a été réalisée par l’équipe de H. J. Kimble au Caltech aux États-Unis par Akira Furusawa en 1998.

Avant d’aborder le principe de cette expérience qui, aujourd’hui est devenue routinière en optique (L'optique est la branche de la physique qui traite de la lumière, du rayonnement électromagnétique et de ses relations avec la vision.) quantique, il est utile de préciser quelques notions liées aux variables continues.

Expression d’un champ électrique (Dans le cadre de l'électromagnétisme, le champ électrique est un objet physique qui permet de définir et éventuellement de mesurer en tout point de l'espace l'influence exercée à distance par des...) monomode

Un champ (Un champ correspond à une notion d'espace défini:) électrique monomode s’écrit de manière classique comme :

 E\left(t\right) = A \cos{\left(\omega t + \phi\right)} = E_{p}\cos{\left(\omega t\right)} + E_{q}\sin{\left(\omega t\right)},

qui est la décomposition (En biologie, la décomposition est le processus par lequel des corps organisés, qu'ils soient d'origine animale ou végétale dès l'instant qu'ils sont privés de vie,...) usuelle du champ électrique dans le plan de Fresnel.

La procédure de quantification canonique conduit à associer au champ électrique l’opérateur suivant :

 \widehat{E}\left(t\right) = E_{o}\left\lbrace\widehat{a}e^{-i\omega t}+\widehat{a}^{\dagger}e^{i\omega t}\right\rbrace

où les opérateurs  \widehat{a} et  \widehat{a}^{\dagger} désigne respectivement les opérateurs d'annihilation et de créations d'une excitation élémentaire d'énergie (Dans le sens commun l'énergie désigne tout ce qui permet d'effectuer un travail, fabriquer de la chaleur, de la lumière, de produire un mouvement.)  \hbar\omega  : le photon (En physique des particules, le photon est la particule élémentaire médiatrice de l'interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent,...). Ils obéissent à la règle de commutation d’un oscillateur harmonique (Les oscillateurs existent dans de nombreux domaines de la physique : mécanique, électricité et électronique, optique. Le modèle de base des oscillateurs est l'oscillateur harmonique : ses oscillations sont décrites par une fonction...)  \left[\widehat{a},\widehat{a}^{\dagger}\right] = 1 .

La constante  E_{o}=\sqrt{\frac{\hbar\omega}{2\epsilon_{o}V}} correspond au champ électrique associé à un seul photon (En physique des particules, le photon est la particule élémentaire médiatrice de l'interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent, cette interaction se traduit d'un...) dans une cavité cubique dont le volume (Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace.) de quantification est V.

Opérateurs de quadrature

Ces opérateurs sont définis par analogie aux opérateurs de position et d’impulsion d’un oscillateur (En physique, un oscillateur est un système manifestant une variation périodique dans le temps (ou pseudo-périodique s'il existe une dissipation d'énergie). Les exemples les plus...) harmonique (Dans plusieurs domaines, une harmonique est un élément constitutif d'un phénomène périodique ou vibratoire (par exemple en électricité : les « courants harmoniques », qui sont des perturbations du courant...) régi par les opérateurs de création et d’annihilation introduit précédemment. Ils seront définis de manière générale, en tenant compte d’une éventuelle rotation d’angle θ dans le plan de Fresnel, comme :

 \widehat{p}_{\theta} = \widehat{a}e^{-i\theta} + \widehat{a}^{\dagger}e^{i\theta}, \widehat{q}_{\theta} = \widehat{p}_{\theta + \frac{\pi}{2}}

Pour le cas particuliers θ = φ, ces opérateurs correspondent respectivement aux quadratures d’amplitude et de phase (Le mot phase peut avoir plusieurs significations, il employé dans plusieurs domaines et principalement en physique :) du champ. Ainsi, leurs variances caractérisent respectivement les fluctuations d’amplitude et de phase. De plus, il est facile de vérifier que ces opérateurs ne commutent pas puisque

 \left[\widehat{p}_{\theta},\widehat{q}_{\theta} \right] = 2i .

On en déduit alors l'inégalité d’Heisenberg suivante :

 V\left(\widehat{p}_{\theta}\right) V\left(\widehat{q}_{\theta}\right) \geq 1 ,

qui est très souvent employée sous la forme :

 \Delta N \Delta\phi\geq 1.

Autrement dit, lorsque l’on mesure avec précision le nombre de photons d’un faisceau, on brouille complètement la phase de ce dernier, et réciproquement.

Limite quantique standard et états cohérents du champ

L’opérateur d’annihilation  \widehat{a} a pour vecteur (En mathématiques, un vecteur est un élément d'un espace vectoriel, ce qui permet d'effectuer des opérations d'addition et de multiplication par un scalaire. Un n-uplet peut...) propre :

 \vert\alpha\rangle = e^{\frac{-\vert\alpha\vert^{2}}{2}}\sum_{n=0}^{+\infty}\, \frac{\alpha^{n}}{\sqrt{n !}}\vert n\rangle

α désigne un nombre complexe lié à l’amplitude A et à la phase φ du champ par α = Aeiφ.

Or, l’action des opérateurs de création et d’annihilation sur les états de Fock (i.e. état nombre de photon où il y a exactement n photons dans le mode considéré)  \vert n\rangle donne :

 \widehat{a}\vert n\rangle = \sqrt{n}\vert n-1\rangle, \widehat{a}^{\dagger}\vert n\rangle = \sqrt{n+1}\vert n+1\rangle .

On vérifie alors facilement que :

 \widehat{a}\vert\alpha\rangle = \alpha \vert\alpha\rangle.

Il est également utile de remarquer qu’un tel état cohérent du champ peut s’exprimer à partir de l’état vide (Le vide est ordinairement défini comme l'absence de matière dans une zone spatiale.) de photons  \vert 0\rangle à l’aide d’un opérateur (Le mot opérateur est employé dans les domaines :) déplacement ( En géométrie, un déplacement est une similitude qui conserve les distances et les angles orientés. En psychanalyse, le déplacement est mécanisme de défense déplaçant la valeur, et finalement...)

 \widehat{D}\left(\alpha\right) = e^{\alpha\widehat{a}^{\dagger}-\alpha^{*}\widehat{a}}.

L’état cohérent, ou état quasi-classique de Glauber, s’écrira comme :

 \vert\alpha\rangle = \widehat{D}\left(\alpha\right) \vert 0\rangle .

Ainsi, l’état vide de photons est un état cohérent dont la valeur moyenne (La moyenne est une mesure statistique caractérisant les éléments d'un ensemble de quantités : elle exprime la grandeur qu'auraient chacun des membres de l'ensemble s'ils étaient tous identiques sans changer...) de photons est nulle. Les fluctuations de cet état en amplitude (Dans cette simple équation d’onde :) et en phase définissent la limite quantique standard par rapport à laquelle on repère toute variance ( En statistique et en probabilité, variance En thermodynamique, variance ) de bruit (Dans son sens courant, le mot de bruit se rapproche de la signification principale du mot son. C'est-à-dire vibration de l'air pouvant donner lieu à la création d'une sensation auditive.),

 \Delta\widehat{p}_{\theta}= \Delta\widehat{q}_{\theta}=1

On voit bien qu’un état cohérent est affecté par des fluctuations qui sont identiques à celle du vide, puisqu’un état cohérent brillant n’est rien d’autres que l’état du vide déplacé dans le plan de Fresnel que l’on appelle aussi espace des phases (L'espace des phases est un espace abstrait dont les coordonnées sont les variables dynamiques du système étudié.).

Enfin, si l’on se rappelle l’inégalité d’Heisenberg qui contraint la mesure des quadratures d’amplitude et de phase, on constate qu’elle n’impose rien sur les variances individuelles. Il devient donc possible d’imaginer des faisceaux dont les fluctuations peuvent être « comprimés » selon l’une ou l’autre des quadratures. Il s’agit des états comprimés du rayonnement (Le rayonnement, synonyme de radiation en physique, désigne le processus d'émission ou de transmission d'énergie impliquant une particule porteuse.) qui prennent une place importante dans les expériences d’optique quantique.

Page générée en 0.242 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique