L'espace des phases est un espace abstrait dont les coordonnées sont les variables dynamiques du système étudié.
Un exemple très schématique permet de fixer les idées.
Prenons par exemple un jeu vidéo (La vidéo regroupe l'ensemble des techniques, technologie, permettant l'enregistrement ainsi que la...) simulant la pose sur la Lune (La Lune est l'unique satellite naturel de la Terre et le cinquième plus grand satellite du...) d'un module d'exploration (L'exploration est le fait de chercher avec l'intention de découvrir quelque chose d'inconnu.) lunaire (Pour les homonymes, voir Pierrot lunaire, une œuvre de musique vocale d'Arnold Schönberg.) (Lunar Exploration Module, LEM) : le joueur peut activer la propulsion (La propulsion est le principe qui permet à un corps de se mouvoir dans son espace environnant....) pour ralentir la chute, et doit donc doser entre la gravité (La gravitation est une des quatre interactions fondamentales de la physique.), qui fait descendre le module, et la propulsion (si celle-ci est trop forte, le module remonte). Si l'on ne voit sur son écran (Un moniteur est un périphérique de sortie usuel d'un ordinateur. C'est l'écran où s'affichent...) que la hauteur (La hauteur a plusieurs significations suivant le domaine abordé.) de l'engin par rapport au sol et que l'on estime au jugé sa vitesse (On distingue :) verticale (La verticale est une droite parallèle à la direction de la pesanteur, donnée notamment par le...), cette opération est longue et difficile.
Si en revanche on lui associe un petit diagramme (Un diagramme est une représentation visuelle simplifiée et structurée des concepts, des idées,...) matérialisant la situation (En géographie, la situation est un concept spatial permettant la localisation relative d'un...) par un simple point (Graphie) dans un système de coordonnées à deux dimensions (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce...) (altitude, vitesse), le pilotage en est considérablement facilité : l'objectif est matérialisé par un point fixe (En mathématiques, pour une application f d’un ensemble E dans lui-même, un élément x de E...) à atteindre : le point (0,0) " au niveau du sol et sans vitesse ", ce qui constitue bien la définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la...) de l'aterrissage. Le problème en devient si simple qu'il peut être automatisé.
Or la vitesse n'est que la dérivée (La dérivée d'une fonction est le moyen de déterminer combien cette fonction varie quand la...) de l'autre coordonnée, la position : c'est un exemple de construction et d'utilisation d'un espace des phases très simple, et d'en tirer immédiatement profit.
Les coordonnées utilisées dans cet espace sont celle des variables canoniques de la mécanique (Dans le langage courant, la mécanique est le domaine des machines, moteurs, véhicules, organes...) hamiltonienne. L'étude de la mécanique dans cet espace permet d'éliminer la contrainte temporelle dans l'étude de l'évolution d'un système. Cela se montre particulièrement utile quand on compare par exemple la dépendance des solutions d'une équation (En mathématiques, une équation est une égalité qui lie différentes quantités, généralement...) différentielle à ses conditions initiales.
Les variables dynamiques sont au nombre (La notion de nombre en linguistique est traitée à l’article « Nombre...) de 6 : 3 variables de position (x, y, z) et trois variables de quantité de mouvement (En physique, la quantité de mouvement est la grandeur physique associée à la vitesse et la masse...) (Px, Py, Pz).
D'après les équations de la mécanique, l'évolution d'un système est entièrement déterminée par la donnée (Dans les technologies de l'information, une donnée est une description élémentaire,...) initiale de la position (x, y, z) et de la vitesse (vx, vy, vz) — la masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un...) étant connue, la quantité (La quantité est un terme générique de la métrologie (compte, montant) ; un scalaire,...) de mouvement est proportionnelle à vitesse.
Voir l'article Principe fondamental de la dynamique.
Une onde peut se caractériser par son vecteur d'onde noté , qui est le vecteur :
Certaines personnes préfèrent définir la norme du vecteur d'onde comme étant l'inverse de la longueur d'onde multiplié par deux fois le nombre pi (ceci change la forme des équations, le terme 2π apparaissant ou pas dans l'équation de l'onde).
Voir l'article Espace réciproque.