Téléportation quantique
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction


Mécanique quantique
 \hat H | \psi\rangle = i\hbar\frac{{\rm d}}{{\rm d}t}|\psi\rangle
Postulats de la mécanique quantique

Histoire de la mécanique quantique

Cette boîte : voir • disc. • mod.

La téléportation quantique est un protocole de communications quantiques consistant à transférer l’état quantique d’un système vers un autre système similaire et séparé spatialement du premier en mettant à profit l’intrication quantique. Contrairement à ce que le nom laisse entendre, il ne s'agit donc pas de transfert de matière. Le terme de téléportation quantique est utilisé pour souligner le fait que le processus est destructif : à l'issue de la téléportation, le premier système ne sera plus dans le même état qu'initialement.

Avant d’aborder le protocole proprement dit, nous allons préciser un certain nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) de notions élémentaires d’une nouvelle science (La science (latin scientia, « connaissance ») est, d'après le dictionnaire Le Robert, « Ce que l'on sait pour l'avoir appris, ce que l'on tient pour vrai au sens large. L'ensemble de...) en train (Un train est un véhicule guidé circulant sur des rails. Un train est composé de plusieurs voitures (pour transporter des personnes) et/ou de plusieurs wagons (pour transporter des marchandises), et peut...) de naître : l’information quantique.

Notion de qubit

Système à deux niveaux non dégénérés.

Toute information numérique (Une information numérique (en anglais « digital ») est une information ayant été quantifiée et échantillonnée, par opposition à une...) est encodée sous forme de mots binaires dont l’entité unique et indivisible est le bit (de l’anglais binary digit). Cette variable (En mathématiques et en logique, une variable est représentée par un symbole. Elle est utilisée pour marquer un rôle dans une formule, un prédicat ou un algorithme. ...) binaire ne peut prendre que deux états distincts « 0 » et « 1 » correspondant par exemple à la présence ou non d’un signal ( Termes généraux Un signal est un message simplifié et généralement codé. Il existe sous forme d'objets ayant des formes particulières. Les signaux lumineux sont employés depuis la...) électrique, lumineux ou autre. En physique (La physique (du grec φυσις, la nature) est étymologiquement la « science de la nature ». Dans un sens général et ancien, la physique désigne la connaissance de la nature ;...) quantique, cette situation (En géographie, la situation est un concept spatial permettant la localisation relative d'un espace par rapport à son environnement proche ou non. Il inscrit un lieu...) se généralise sans difficulté à l’aide d’un système à deux niveaux : un niveau fondamental  \vert g\rangle et un niveau excité  \vert e\rangle séparé du premier d’une énergie (Dans le sens commun l'énergie désigne tout ce qui permet d'effectuer un travail, fabriquer de la chaleur, de la lumière, de produire un mouvement.) non nulle  \hbar\omega_{o} , où ωo est par exemple la fréquence (En physique, la fréquence désigne en général la mesure du nombre de fois qu'un phénomène périodique se reproduit par unité de temps. Ainsi lorsqu'on...) de Bohr d’une certaine transition atomique que l’on sélectionne à l’aide d’un laser (Un laser est un appareil émettant de la lumière (rayonnement électromagnétique) amplifiée par émission stimulée. Le terme laser provient...) asservi sur cette fréquence. Naturellement, on identifiera l’état binaire « 0 » à l’état fondamental du système à 2 niveaux et l’état binaire « 1 » à l’état excité du système que l’on notera désormais par les kets  \vert 0\rangle et  \vert 1\rangle . Ces deux états constituent alors la base de l’espace de Hilbert du système, et l’état de ce dernier s’écrira de manière générale comme  \vert\psi\rangle = \alpha\vert 0\rangle + \beta\vert 1\rangle où les paramètres complexes  \left(\alpha,\beta\right) vérifient la condition de normalisation  \vert\alpha\vert^{2}+\vert\beta\vert^{2}=1 . On appelle alors qubit (pour quantum (En physique, un quantum (mot latin signifiant « combien » et qui s'écrit « quanta » au pluriel) représente la...) binary digit) un tel système à deux niveaux utilisé comme brique élémentaire de la logique quantique. Etant donné l'arbitraire de phase (Le mot phase peut avoir plusieurs significations, il employé dans plusieurs domaines et principalement en physique :) d'un état quantique  \vert\psi\rangle , on peut représenter l'état d'un qubit par un vecteur (En mathématiques, un vecteur est un élément d'un espace vectoriel, ce qui permet d'effectuer des opérations d'addition et de multiplication par un scalaire. Un n-uplet peut constituer un exemple de vecteur, à condition...) parcourant la sphère (En mathématiques, et plus précisément en géométrie euclidienne, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La valeur de...) de Bloch avec :

 \alpha = \cos{\left(\frac{\theta}{2}\right)}, \beta = e^{i\phi}\sin{\left(\frac{\theta}{2}\right)}.
Sphère de Bloch d'un qubit : les états binaires classiques sont aux pôles de la sphère.

A la différence du bit classique, il est impossible de déterminer (de lire) l’état d’un qubit sans projeter ce dernier sur l’un des états binaires classiques. Alors on peut penser qu’il suffit de multiplier un qubit afin d’en déterminer l’état par mesures répétées sur les copies du qubit initial. Cependant, la possibilité d’une telle multiplication (La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division .) des copies du qubit est interdite par la physique quantique, elle fait même l’objet d’un théorème (Un théorème est une proposition qui peut être mathématiquement démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit à partir d'axiomes. Un...).

Page générée en 0.198 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique