En mathématiques, et plus particulièrement en théorie des nombres, le théorème de la progression arithmétique, dû au mathématicien allemand Gustav Lejeune-Dirichlet, s'énonce de la façon suivante :
ce qui est équivalent à l'énoncé suivant :
Ce théorème utilise à la fois les résultats de l'arithmétique modulaire et ceux de la théorie analytique des nombres.
Ce théorème généralise le théorème d'Euclide d'après lequel il existe une infinité de nombres premiers. Il indique que si l'on construit un tableau comme le suivant, alors certaines lignes possèderont au plus un nombre premier, (indiqué en rouge sur la figure) et il sera, s'il existe, toujours en première colonne. Cette configuration se présente ici pour les lignes commençant par 3, 6 et 9. Les autres contiendront toujours un nombre infini de nombres premiers (ici de premier élément 1, 2, 4, 5, 7 et 8).
Les lignes contenant au plus un nombre premier sont celles dont la première valeur contient un diviseur commun avec le nombre dans la dernière ligne et première colonne.
On peut aller plus loin. La répartition statistique est presque la même dans chaque ligne. Et plus la ligne est longue, plus les répartitions statistiques se ressemblent, pour devenir exactement les mêmes. Vu sous cet angle, les nombres premiers sont remarquablement bien ordonnés. Ce résultat est démontré par le théorème de densité de Chebotarev, une généralisation du travail de Dirichlet. Dans l'exemple cité, les lignes commençant avec un entier premier avec 9 en contiennent entre 8 et 5, soit une variation inférieure à 40%. En revanche, si le tableau est prolongé jusqu'à la valeur 1 000, alors le nombre de nombres premiers dans les lignes en contenant une infinité ne varie plus que de 26 à 29, soit une variation de moins de 10%.
Une autre analyse est réalisée sur l'apparition du premier nombre premier dans une ligne ; elle est l'objet du Théorème de Linnik.
1 | 10 | 19 | 28 | 37 | 46 | 55 | 64 | 73 | 82 | 91 | 100 | 109 | 118 | 127 | 136 | 145 |
2 | 11 | 20 | 29 | 38 | 47 | 56 | 65 | 74 | 83 | 92 | 101 | 110 | 119 | 128 | 137 | 146 |
3 | 12 | 21 | 30 | 39 | 48 | 57 | 66 | 75 | 84 | 93 | 102 | 111 | 120 | 129 | 138 | 147 |
4 | 13 | 22 | 31 | 40 | 49 | 58 | 67 | 76 | 85 | 94 | 103 | 112 | 121 | 130 | 139 | 148 |
5 | 14 | 23 | 32 | 41 | 50 | 59 | 68 | 77 | 86 | 95 | 104 | 113 | 122 | 131 | 140 | 149 |
6 | 15 | 24 | 33 | 42 | 51 | 60 | 69 | 78 | 87 | 96 | 105 | 114 | 123 | 132 | 141 | 150 |
7 | 16 | 25 | 34 | 43 | 52 | 61 | 70 | 79 | 88 | 97 | 106 | 115 | 124 | 133 | 142 | 151 |
8 | 17 | 26 | 35 | 44 | 53 | 62 | 71 | 80 | 89 | 98 | 107 | 116 | 125 | 134 | 143 | 152 |
9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 | 117 | 126 | 135 | 144 | 153 |