Théorème de la progression arithmétique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Johann Peter Gustav Lejeune Dirichlet, auteur du théorème

En mathématiques, et plus particulièrement en théorie des nombres, le théorème de la progression arithmétique, dû au mathématicien allemand Gustav Lejeune-Dirichlet, s'énonce de la façon suivante :

« Pour tous les entiers naturels non nuls n et m premiers entre eux, il existe une infinité de nombres premiers de la forme n + a m, où a est un entier positif. »

ce qui est équivalent à l'énoncé suivant :

« Pour tous les entiers non nuls n et m premiers entre eux, il existe une infinité de nombres premiers dans la classe de n modulo m. »

Ce théorème utilise à la fois les résultats de l'arithmétique modulaire et ceux de la théorie analytique des nombres.

Signification du théorème

Ce théorème généralise le théorème d'Euclide d'après lequel il existe une infinité de nombres premiers. Il indique que si l'on construit un tableau comme le suivant, alors certaines lignes possèderont au plus un nombre premier, (indiqué en rouge sur la figure) et il sera, s'il existe, toujours en première colonne. Cette configuration se présente ici pour les lignes commençant par 3, 6 et 9. Les autres contiendront toujours un nombre infini de nombres premiers (ici de premier élément 1, 2, 4, 5, 7 et 8).

Les lignes contenant au plus un nombre premier sont celles dont la première valeur contient un diviseur commun avec le nombre dans la dernière ligne et première colonne.

On peut aller plus loin. La répartition statistique est presque la même dans chaque ligne. Et plus la ligne est longue, plus les répartitions statistiques se ressemblent, pour devenir exactement les mêmes. Vu sous cet angle, les nombres premiers sont remarquablement bien ordonnés. Ce résultat est démontré par le théorème de densité de Chebotarev, une généralisation du travail de Dirichlet. Dans l'exemple cité, les lignes commençant avec un entier premier avec 9 en contiennent entre 8 et 5, soit une variation inférieure à 40%. En revanche, si le tableau est prolongé jusqu'à la valeur 1 000, alors le nombre de nombres premiers dans les lignes en contenant une infinité ne varie plus que de 26 à 29, soit une variation de moins de 10%.

Une autre analyse est réalisée sur l'apparition du premier nombre premier dans une ligne ; elle est l'objet du Théorème de Linnik.

 1  10  19  28  37  46  55  64  73  82  91  100  109  118  127  136  145
 2  11  20  29  38  47  56  65  74  83  92  101  110  119  128  137  146
 3  12  21  30  39  48  57  66  75  84  93  102  111  120  129  138  147
 4  13  22  31  40  49  58  67  76  85  94  103  112  121  130  139  148
 5  14  23  32  41  50  59  68  77  86  95  104  113  122  131  140  149
 6  15  24  33  42  51  60  69  78  87  96  105  114  123  132  141  150
 7  16  25  34  43  52  61  70  79  88  97  106  115  124  133  142  151
 8  17  26  35  44  53  62  71  80  89  98  107  116  125  134  143  152
 9  18  27  36  45  54  63  72  81  90  99  108  117  126  135  144  153
Page générée en 0.182 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise