Euclide | |
---|---|
| |
Naissance | vers -325 () |
Décès | vers -265 Alexandrie (Égypte) |
Champs | Mathématiques |
Célèbre pour | Division Euclidienne et Géométrie Euclidienne |
modifier |
Euclide, en grec ancien Εὐκλείδης Eukleidês (né vers -325, mort vers -265 à Alexandrie) est un mathématicien de la Grèce antique ayant probablement vécu en Afrique, auteur des Éléments, qui sont considérés comme l'un des textes fondateurs des mathématiques modernes.
Peu d'informations sont connues à propos de la vie d'Euclide. Contemporain d'Archimède (né en -287 et mort en -212), il nait vers -325 et meurt vers -265.
Il part en Égypte pour y enseigner les mathématiques sous le règne de Ptolémée Ier. Il travaille au musée d'Alexandrie et à l'école de mathématiques. Entouré de ses disciples, il mène de nombreux travaux de recherche.
Ses Œuvres complètes ont été données par David Gregory, Oxford, 1703, grec-latin, et traduites en français par François Peyrard, Paris, 1814-1818, 3 volumes in-4, avec texte grec et traduction latine.
Les Éléments sont une compilation du savoir géométrique et restèrent le noyau de l'enseignement mathématique pendant près de 2000 ans. Il se peut qu'aucun des résultats contenus dans les Éléments ne soit d'Euclide, mais l'organisation de la matière et son exposé lui sont dus.
Les Éléments sont divisés en treize livres. Les livres 1 à 6, géométrie plane, les livres 7 à 9, théorie des rapports, le livre 10, la théorie de nombres irrationnels d'Eudoxe, et enfin les livres 11 à 13 de géométrie dans l'espace. Le livre se termine par l'étude des propriétés des cinq polyèdres réguliers et une démonstration de leur existence. Les Éléments sont remarquables par la clarté avec laquelle les théorèmes sont énoncés et démontrés.
Plus d'un millier d'éditions manuscrites des Éléments ont été publiées avant la première version imprimée en 1482. La rigueur n'y est pas toujours à la hauteur des canons actuels, mais la méthode consistant à partir d'axiomes, de postulats et de définitions, pour déduire un maximum de propriétés des objets considérés, le tout dans un ensemble organisé, était nouvelle pour l'époque. Les Éléments durent leur succès à leur supériorité d'organisation, de systématisation et de logique mais pas d'exhaustivité (ni conique, ni résolution par neusis ou ajustement). Les dernières recherches entreprises en histoire des mathématiques tendent à prouver qu'Euclide n'est pas le seul auteur des Éléments. Il était vraisemblablement entouré d'un collège de disciples ayant tous participé à leur élaboration.
La géométrie telle qu'elle est définie par Euclide dans ce texte fut considérée pendant des siècles comme la géométrie et il fut difficile de lui ôter cette suprématie ; Nikolaï Ivanovitch Lobatchevski fut le premier à s'y essayer officiellement dès 1826, suivi de János Bolyai, mais la légende veut qu'il n'ait pas été pris au sérieux jusqu'à la mort de Gauss, lorsque l'on découvrit parmi les brouillons de ce dernier qu'il avait lui aussi imaginé des géométries non euclidiennes.
Dans ses livres, Euclide utilise sans la démontrer une propriété des droites, le "postulat d'Euclide", que l'on exprime de nos jours en affirmant que par un point pris hors d'une droite il passe une et une seule parallèle à cette droite.
Il y a essentiellement trois sortes de géométries :
Riemann a montré qu'un modèle de la géométrie sphérique est la géométrie de la sphère où les droites sont les méridiens ou grands cercles. Poincaré a donné un modèle de la géométrie de Lobatchevski. Étant donné que ces trois géométries ont des modèles, il n'y aucune raison d'en privilégier l'une plutôt que l'autre. La théorie de la relativité d'Einstein a porté un coup fatal à la géométrie d'Euclide en montrant la courbure de l'espace. En effet lorsque l'espace se courbe, il abandonne son aspect euclidien.
Euclide s'est aussi intéressé à l'arithmétique dans le livre 7. Il a ainsi défini la division que l'on appelle division euclidienne et un algorithme pour calculer le plus grand commun diviseur de deux nombres, connu sous le nom d'algorithme d'Euclide.