Théorie des ensembles de von Neumann?Bernays?Gödel - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La théorie des ensembles de von Neumann–Bernays–Gödel, abrégée en NBG ou théorie des classes, est une théorie axiomatique essentiellement équivalente à la théorie ZFC de Zermelo–Fraenkel avec axiome du choix (et avec les mêmes variantes possibles), mais dont le pouvoir expressif est plus riche. Elle peut s’énoncer en un nombre fini d’axiomes, et donc sans schéma, au contraire de ZFC (voir schéma d'axiomes de compréhension et schéma d'axiomes de remplacement). Ceci n’est possible que grâce à une modification du langage de la théorie, qui permet de parler directement de classe, une notion par ailleurs utile en théorie des ensembles et qui apparaissait déjà, de façon assez informelle, dans les écrits de Georg Cantor dès avant 1900.

La théorie des classes a été introduite en 1925 par John von Neumann, mais celui-ci avait pris comme objets primitifs des fonctions. Elle est reformulée en termes d'ensemble et d'appartenance et simplifiée par Paul Bernays vers 1930. Kurt Gödel en donne une version inspirée de celle de Bernays, pour sa preuve de cohérence relative de l'axiome du choix et de l'hypothèse du continu par les constructibles, lors de conférences à Princeton en 1937-1938 (publiées en 1940).

Les classes

Les classes en théorie des ensembles

Les théories des ensembles comme la théorie de Zermelo (dans sa ré–énonciation moderne) et ses extensions (Zermelo–Fraenkel, ZFC, etc.) s’énoncent dans le langage du calcul des prédicats du premier ordre égalitaire construit sur le seul symbole de l’appartenance. Autrement dit, les énoncés n’utilisent que des variables, qui désignent des ensembles, l’égalité et l’appartenance, qui sont des relations entre ces ensembles ; ils combinent des relations avec les symboles logiques, connecteurs et quantificateurs. En particulier les seuls objets de base de la théorie sont les ensembles.

Ces théories des ensembles ne disposent pas de variables pour les classes, qui sont des collections d’ensembles bien définies mais « trop grosses » pour être des ensembles sans conduire à des paradoxes. Ainsi la collection des ensembles qui n’appartiennent pas à eux-mêmes ne peut être un ensemble, selon le paradoxe de Russell. Elle est pourtant bien définie : c’est une classe. On ne peut donc parler de classe dans ces théories qu’au travers des prédicats du langage qui les définissent (comme cela est exposé dans l’article sur les classes).

Les classes comme objets primitifs

Une autre solution est d'ajouter des variables pour les classes, on a maintenant deux types d'objets de base, les ensembles et les classes, et il est tout à fait possible d'axiomatiser une telle théorie de façon à ne pas modifier les énoncés démontrables de la théorie des ensembles d'origine, ceux qui ne font donc pas appel à ces nouvelles variables de classe. La théorie NBG est une telle théorie. Il en existe en fait autant de variantes que pour la théorie des ensembles dans le langage d'origine, suivant les axiomes que l'on choisira ou non d'ajouter.

Les classes et les prédicats

Une fois ajoutées au langage des variables de classes, il est très simple d'axiomatiser NBG à partir de ZFC : il suffit d'ajouter un schéma d'axiomes, le schéma de compréhension pour les classes, qui associe une classe à tout prédicat (à une variable) de la théorie des ensembles. Les prédicats à plusieurs variables peuvent être représentés grâce aux couples de Wiener-Kuratowski. Il n'y a plus qu'à ré–énoncer tous les axiomes de la théorie ZFC en restreignant les variables aux ensembles. Les schémas d'axiomes, qui utilisent un axiome par prédicat de la théorie des ensembles, peuvent alors être représentés par un seul axiome, grâce à la notion de classe.

Il y a cependant une petite difficulté : comme on a étendu le langage de la théorie, celui-ci permet de définir de nouveaux prédicats. Il faut donc contraindre les classes à être définies par les anciens prédicats, ceux qui n'utilisent pas de variable de classe. En fait il suffit qu'ils n'utilisent pas de quantificateur sur les classes, les variables non quantifiées sont de simples paramètres, auxquels ultimement ne pourront être substitués que des prédicats purement ensemblistes.

Ainsi on obtient une théorie des classes très similaire à ZFC mais qui n'est toujours pas finiment axiomatisée : le schéma de remplacement de ZFC peut être remplacé par un seul axiome, mais on a introduit un nouveau schéma. Cependant il est maintenant possible de réduire ce schéma à un nombre fini de cas, en mimant dans les classes la construction inductive des formules de ZFC : les règles de construction sont en nombre fini, et à chacune correspond un axiome d'existence. Comme les formules à plusieurs variables libres sont représentées à l'aide de listes finies de variables construites par les couples de Wiener-Kuratowski, il faut ajouter quelques axiomes pour gérer celles-ci. Outre que cela conduirait à une théorie plus forte, il est indispensable que les prédicats ne soient pas tous les prédicats du nouveau langage pour que cette construction soit possible.

Ce procédé n'est pas particulier à la théorie des ensembles, et a été adapté à d'autres théories avec schémas d'axiomes, par exemple dans le cadre de l'arithmétique.

Page générée en 0.081 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise