Suite arithmétique
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

En mathématique, une suite arithmétique est une suite définie sur \{n \in \mathbb N, n \geq n_0\} à valeurs dans un groupe additif E telle qu'il existe un élément \ r de \ E appelé raison pour lequel :

\forall n \geq n_0 \ \ \ u_{n+1} = u_n + r \,

En pratique E = \R ou \mathbb C. Mais on peut tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) aussi bien rencontrer des suites arithmétiques à valeurs dans un espace vectoriel (En algèbre linéaire, un espace vectoriel est une structure algébrique permettant en pratique d'effectuer des combinaisons linéaires. Pour une introduction au concept de vecteur, voir l'article Vecteur.).

On dit alors que les termes \ u_n sont en " progression arithmétique (L'arithmétique est une branche des mathématiques qui comprend la partie de la théorie des nombres qui utilise des méthodes de la géométrie algébrique et de la théorie des groupes. On l'appelle plus...) ".

Exemple Si la raison \ r=2 et \ u_0=10 :

  • \ u_0=10
  • \ u_1=12
  • \ u_2=14
  • \vdots

Terme général

Si E est un groupe et si (u_n )_{n\in\mathbb N} est une suite arithmétique (En mathématique, une suite arithmétique est une suite définie sur à valeurs dans un groupe additif E telle qu'il existe un élément de appelé raison pour lequel :) de E de raison r\in E alors, pour tout n\in\mathbb N :

u_n = u_0 + n.r \,

Plus généralement, si la suite est définie sur \{n \in \mathbb N, n \geq n_0\} et si n et p appartiennent à A alors :

u_n = u_p + (n - p).r \,

Une suite arithmétique est donc entièrement déterminée par la donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un événement, etc.) de son premier terme u_{n_0} et par sa raison r.

Réciproquement, une suite définie sur \{n \in \mathbb N, n \geq n_0\} par

u_n = u_{n_0} + (n - n_0).r \,

est une suite arithmétique de raison r.

En analyse réelle ou complexe, la suite arithmétique est l'aspect discret de la fonction affine (En mathématiques élémentaires, une fonction affine est une fonction de la variable réelle dont la représentation graphique est une droite. C'est une...).

Sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une évolution progressive allant du ralentissement du vieillissement,...) de variation et convergence (Le terme de convergence est utilisé dans de nombreux domaines :)

Ce paragraphe concerne les suites arithmétiques à valeurs dans \R.

Si r > 0 la suite est croissante, si r < 0 la suite est décroissante et si r = 0 la suite est constante.

En général (si r est non nul), la suite arithmétique est divergente. Cependant elle admet une limite:

  • si r > 0 sa limite est + \infty
  • si r < 0 sa limite est - \infty.
  • Si la raison est nulle, la suite est constante et converge vers la constante.

Somme des termes

Si E = \R ou \mathbb C et si (u_n )_{n\in\mathbb N} est une suite arithmétique de E alors, pour tout n\in\mathbb N :

\sum_{0 \le p \le n}u_p={(n+1)\over 2}(u_0+u_n)

La légende veut que la méthode de calcul fut inventée par Carl Friedrich Gauss, élève dissipé qu'il s'agissait d'occuper et à qui l'on aurait confié la tâche de calculer la somme de tous les entiers de 1 à 100. En écrivant la somme deux fois, dans un ordre différent, il obtint :

S = 1 + 2 + 3 + .... + 98 + 99 + 100
S = 100 + 99 + 98 + ...+ 3 + 2 + 1

Puis, remarquant que 100 + 1 = 99 + 2 = 98 + 3 = ... = 101, il obtint facilement

2S = 100 × 101 donc S = 50 × 101.

Légende ou réalité, cette astuce est la méthode de démonstration (En mathématiques, une démonstration permet d'établir une proposition à partir de propositions initiales, ou précédemment démontrées à partir de propositions...) pour calculer les somme des termes:

S = u0 + u1 + ... + un
S = un + un − 1 + ... + u0

Remarquant que up + unp = u0 + un, il vient

2S = (n+1) \times (u_0+u_n)

Cette propriété s'applique pour calculer la somme des n premiers entiers

1 + 2 + 3 ... + n = \frac{n(n+1)}{2}

et se généralise à toute somme de termes consécutifs d'une suite arithmétique

u_p + u_{p+1} + ...+u_n = \frac{(n-p+1)(u_n + u_p)}{2}

Elle se généralise aussi à toute suite à valeurs dans un espace vectoriel sur un corps de caractéristique différente (En mathématiques, la différente est définie en théorie algébrique des nombres pour mesurer l'éventuel défaut de dualité d'une application définie à l'aide...) de 2

Page générée en 0.054 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique