Le haut taux d’homocystéine dans le sang, causé par le polymorphisme C677T, est associé aussi à des thromboses artérielles et à des malformations du tube neural 12. Les malformations du tube neural les plus courantes sont la spina bifida et l’anencéphalie 10. Un apport alimentaire enrichi en acide folique et en vitamines B (B12, B6, B2) chez les femmes qui prévoient d’être enceintes peut réduire le risque de malformations du tube neural chez le fœtus 10 et a un effet protecteur pour les maladies cardio-vasculaires 11. Ce polymorphisme est aussi associé à la schizophrénie 13,14. Le mécanisme reste encore incertain, ce polymorphisme confère un risque d’avoir des symptômes négatifs et réduit la sévérité des symptômes positifs 14. Il a été montré que le génotype TT pour MTHFR est associé à un risque de schizophrénie 36% plus élevé qu’avec le génotype CC 13.
Suite à de nombreux travaux sur des données cliniques et épidémiologiques l’hyperhomocystéinémie est de plus en plus considérée comme un facteur de risque indépendant pour les maladies cardio-vasculaires. Les maladies cardiovasculaires sont l’une des principales causes de décès au Canada. En 2002, elles ont été responsables d'au moins 33 % de tous les décès (34 % chez les femmes, 32 % chez les hommes) 7. En 2004, le taux de mortalité normalisé selon l'âge pour les maladies cardiovasculaires est de 175,6 décès pour 100 000 habitants 8. Il semblerait qu’un excès d’homocystéine endommagerait la paroi intérieure des artères ce qui pourrait affecter la coagulation du sang 6. Lorsque le taux d’homocystéine est en élevé, les cellules artérielles absorbent plus facilement le mauvais cholestérol (LDL). L’homocystéine facilite la croissance des muscles lisses des artères ce qui pourrait causer une sténose des artères et elle augmente le risque de formation de caillot sanguin 9. Les valeurs moyennes de l’homocystéinémie se situent aux alentours de 9 µmol/L. Le seuil à partir duquel l’homocystéinémie doit être considérée comme anormale varie de 11 à 15 µmol/L 1. Plusieurs facteurs déterminent le taux d’homocystéine dans le sang notamment au niveau des enzymes qui interviennent dans la régulation de l’homocystéine (MTHFR, MS et CBS). En l’absence de déficit enzymatique, le taux d’homocystéine peut être accru par une carence en vitamine B6, vitamine B12 et en folates contenu dans l’alimentation. En effet, le métabolisme normal de l’homocystéine est contrôlé en partie par ces vitamines qui sont des cofacteurs essentiels. Ce déficit en vitamines peut être dû à une consommation insuffisante ou à l’incapacité de l’organisme à les absorber 6.
Le polymorphisme C677T influence le taux plasmatique d’homocystéine. Une mutation génétique de cette enzyme crée une enzyme thermolabile qui possède une activité réduite d’environ 50% à 37°C et une perte complète d’activité à 46°C. La mutation a lieu en position 677 et transforme la base C en T. Ceci a pour conséquence la formation d’un acide aminé, la valine (V) au lieu d’une alanine (A) en position 222. La fréquence de cet allèle mutant est de 31% à 39% 4. La mutation T au lieu de C crée un site de restriction pour deux enzymes qui sont Hinf I (G/ANT/C) et Taq I (T/CGA) 4. Lorsque le taux de folates apporté par l’alimentation est bas, l’enzyme ayant une activité réduite ne transforme pas intégralement le peu de folates d’où une augmentation en homocystéine. Un faible taux en folates accentue donc l’effet de la mutation 2. La connaissance de ce processus permet de pouvoir réduire, par un apport nutritionnel en folates (où acide folique), le taux d’homocystéine 2,4,5. Les légumes vert foncé comme le brocoli, les épinards, les pois et les choux de Bruxelles sont d'excellentes sources d'acide folique. L’acide folique se trouve aussi dans le maïs, les pois secs, les haricots, les lentilles, les oranges et le jus d'orange 10.