Biréfringence - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Description des milieux biréfringents

On considère la propagation d'un rayon lumineux polarisé rectilignement dans un milieu biréfringent. De manière générale, la vitesse de cette onde, ou en d'autres termes l'indice de réfraction, dépend de la direction de polarisation du rayon. C'est le propre d'un milieu biréfringent.

Il existe cependant au moins une direction privilégiée pour laquelle l'indice est indépendant de la direction de polarisation. Une telle direction est appelée axe optique du milieu. Dans les milieux naturels, il existe alors deux possibilités correspondant à deux types de milieux :

  • les milieux uniaxes qui possèdent un unique axe optique
  • les milieux biaxes qui en possèdent deux.

Certains métamatériaux peuvent présenter plus de deux axes optiques. Il n'en sera pas question ici.

Les milieux uniaxes

Les milieux uniaxes ont deux indices de réfraction principaux : on les appelle indices ordinaire et extraordinaire. Ils sont en général notés respectivement no et ne. La différence Δn = neno est alors appelée biréfringence (ou biréfringence absolue) du milieu. Pour la plupart des milieux, elle vaut en valeur absolue quelques pourcents.

On distingue deux cas selon le signe de la biréfringence :

  • Δn > 0 : le milieu est dit uniaxe positif. L'ellipsoïde des indices a une forme allongée (en forme de cigare).
  • Δn < 0 : le milieu est dit uniaxe négatif. L'ellipsoïde des indices a une forme aplatie (en forme de disque).

De très nombreux cristaux naturels sont uniaxes, comme le quartz ou la calcite.

Les cristaux uniaxes appartiennent aux systèmes cristallins trigonal, tétragonal ou hexagonal.

Les milieux biaxes

Les milieux biaxes ont trois indices de réfraction principaux notés en général n1, n2 et n3.

Les cristaux biaxes appartiennent aux systèmes cristallins triclinique, monoclinique ou orthorhombique.

Biréfringence induite

Il est possible de créer de la biréfringence dans un milieu optiquement isotrope de plusieurs manières.

Par un champ électrique

  • on parle d’effet Pockels ou effet électro-optique du premier ordre lorsque la biréfringence est proportionnelle au champ électrique appliqué. Cet effet se produit dans les cristaux non centro-symétriques.
  • si la biréfringence est proportionnelle au carré du champ électrique on parle d’effet Kerr. L’effet Kerr peut intervenir pour des gaz et des liquides. Pour les cristaux il est généralement négligeable devant l’effet Pockels qui est beaucoup plus fort, sauf pour les cristaux ferroélectriques proches de la température de Curie tels que la pérovskite.
  • l’effet Kerr s’observe également à très haute fréquence : il peut être produit par le champ électrique même du rayon lumineux. On parle alors d’effet Kerr optique, et l’indice de réfraction varie linéairement avec l’intensité lumineuse. C’est cet effet qui est à l’origine du self-focusing (auto-focalisation) des faisceaux lasers de très forte intensité.

Par un champ magnétique

  • L’effet Faraday est une biréfringence circulaire ou pouvoir rotatoire qui apparaît si on applique un champ magnétique statique ou de basse fréquence parallèlement à la direction de propagation du rayon lumineux. La biréfringence créée est proportionnelle au champ magnétique. On parle alors de biréfringence magnétique circulaire. Cet effet est utilisé dans les isolateurs de Faraday, ou diodes optiques en télécommunications.
  • L’effet Cotton-Mouton (découvert par Kerr (1901) et étudié par Majorana (1902) puis Cotton et Mouton (1904)), appelé parfois effet Voigt exhibe une biréfringence induite par un champ magnétique perpendiculaire à la direction de propagation. La biréfringence est alors proportionnelle au carré du champ appliqué. Il s’agit d’une biréfringence linéaire et non circulaire. L’effet est faible sauf dans des cas particuliers (suspensions colloïdales avec particules métalliques). Il existe également un effet Cotton-Mouton dans le vide (biréfringence magnétique du vide).
  • L'effet Kerr magnéto-optique s’observe par réflexion sur une surface d’un matériau soumis à un champ magnétique. Ces effets sont proportionnels au champ magnétique, comme l’effet Faraday, mais ne s’apparentent pas à la biréfringence. Une application bien connue est celle des disques et lecteurs magnéto-optiques.

Par une contrainte mécanique

Les cristaux soumis à des contraintes mécaniques peuvent présenter une biréfringence : on parle de photoélasticité. Lorsque le matériau est transparent, cet effet permet de visualiser les contraintes par interférométrie. Les liquides peuvent également présenter une biréfringence sous contrainte mécanique. Les contraintes étant généralement observées en régime d’écoulement stationnaire, on parle de biréfringence d’écoulement.

Page générée en 0.099 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise