Mis en évidence (analytiquement) par Siméon Denis Poisson, le coefficient de Poisson (aussi appelé coefficient principal de Poisson) permet de caractériser la contraction de la matière perpendiculairement à la direction de l'effort appliqué.
Le coefficient de Poisson fait partie des constantes élastiques. Il est compris entre -1 et 0,5. Les valeurs expérimentales obtenues dans le cas d'un matériau parfaitement isotrope sont très proches de la valeur théorique (1/4). Pour un matériau quelconque, on obtient en moyenne 0,3. Il existe également des matériaux à coefficient de Poisson négatif : on parle alors parfois de matériaux auxétiques.
Les caractéristiques mécaniques des matériaux sont variables d'un échantillon à l'autre. Néanmoins, pour les calculs, on peut considérer en bonne approximation les valeurs suivantes. Le coefficient de Poisson n'a pas d'unité!
|
|
|
Soit un cube constitué d'un matériau isotrope d'un volume initial
La loi de Poisson s'écrit alors:
D'où le volume final du cube:
en divisant cette relation par le volume initial
On fait maintenant apparaitre l'expression
D'où:
L'hypothèse de petites déformations permet de négliger les termes du second ordre. En approximant
Cette relation montre que ν doit rester inférieur à 1/2 pour que le module d'élasticité isostatique reste positif (sinon le matériau gonflerait dès qu'on essayerait de le comprimer). On note également les valeurs particulières de ν :
Cette relation met en évidence le fait que ν ne peut être inférieur à -1, sinon son module de cisaillement serait négatif (il serait sollicité en traction dès qu'on le comprimerait!)
Un coefficient secondaire de Poisson est alors défini par la relation suivante :
Où E1 et E2 sont les modules de Young des matériaux et ν21 est le coefficient secondaire de Poisson.