Dichroïsme circulaire - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Application aux molécules biologiques

En général le dichroïsme circulaire apparaît dans toute molécule optiquement active. En conséquence, cela apparaît dans les molécules biologiques du fait de leur chiralité. C'est le cas de certains sucres et acides aminés. Leur structure secondaire joue également un rôle sur leur dichroïsme, en particulier les structures en hélice. C'est cette dernière propriété qui est utilisée en biochimie. Ainsi, les structures en hélice alpha et feuillet bêta des protéines et en double hélice des acides nucléiques présentent des dichroïsmes circulaires caractéristiques.

D'après la mécanique quantique, le dichroïsme circulaire est lié à la dispersion du pouvoir rotatoire, c'est-à-dire au fait que celui-ci dépende de la longueur d'onde. Tandis que ce dernier est mesuré loin des bandes d'absorption des molécules utilisées, le dichroïsme circulaire est mesuré proche de ces bandes. Il est possible, en principe, de passer de l'un à l'autre grâce à des transformations mathématiques.

La répartition spectrale du dichroïsme circulaire donne, dans le domaine des ultraviolets, des informations importantes sur la structure secondaire des protéines. Par exemple, cela indique la proportion de la protéine dans les conformations en hélice alpha, en feuillet bêta, en coudes, en structure aléatoire (random coil en anglais) etc. Il est aussi possible d'observer la dénaturation d'une protéine par l'augmentation du signal correspondant à la structure aléatoire et la diminution des signaux hélice alpha et feuillet bêta. On peut également suivre le repliement de la protéine (processus inverse de la dénaturation) et déterminer quelle structure secondaire se forme en premier (il s'agit souvent des structures en hélices alpha).

Ces informations permettent de réduire énormément les possibilités de structure de la protéine étudiée, mais elles ne donnent pas les emplacements des structures secondaires détectées. Cependant, le dichroïsme circulaire est un outil très efficace pour observer les modifications des conformations. Par exemple, il peut être utilisé pour montrer que la structure secondaire change en fonction de la température ou en fonction de la présence d'autres molécules. Dans ce sens, il révèle d'importantes informations sur l'aspect thermodynamique de la molécule. On peut également l'utiliser pour vérifier que la molécule étudiée est bien dans son état naturel, ou pour réaliser d'autres mesures spectroscopiques non liées à ces conformations.

Le dichroïsme circulaire donne moins d'informations sur la structure des protéines que la diffractométrie de rayons X ou la RMN de protéines, mais il permet de faire des mesures rapidement, sans nécessiter une grande quantité de protéines, et sans analyse compliquée des données. Ainsi, il permet d'étudier rapidement les protéines en faisant varier les conditions du solvant, la température, le pH, la salinité, etc.

Page générée en 0.101 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise