Émetteur à étincelles - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Principe de fonctionnement

Schéma d'un émetteur à étincelles.

Le fonctionnement d'un émetteur à étincelles type bobine Tesla est simple mais présente des problèmes techniques importants en raison des courants d'induction électromagnétiques très forts au moment de l'étincelle qui provoquent un défaut d'isolation dans le primaire du transformateur. Pour éviter ce problème, la fabrication de systèmes, même de faible puissance, doit être de très grande qualité. Notons aussi qu'un système à onde amortie est très gourmand en bande passante ce qui limite énormément le nombre de stations pouvant opérer en même temps sans se gêner.

Dans sa forme la plus élémentaire, un émetteur à étincelles comporte un éclateur connecté à travers un oscillateur composé d'un condensateur et d'une inductance soit en série, soit en parallèle. Dans un circuit d'émission classique, une source haute tension (représentée sur le schéma par une batterie d'accumulateurs, mais qui est en réalité un transformateur haute tension) charge un condensateur (C sur la figure) à travers une résistance jusqu'à ce que l'éclateur crée une décharge ; enfin une impulsion de courant passe à travers le condensateur (C sur la figure). Le condensateur et l'inductance forment un circuit oscillant. Après avoir été excité par l'impulsion de courant, l'oscillation décroît rapidement parce que son énergie est émise par l'antenne. En raison de l'attaque et de la décroissance rapide de l'oscillation, l'impulsion radioélectrique occupe une large bande de fréquences.

Le rôle de l'éclateur est de se comporter, dans un premier temps, comme une forte résistance électrique qui permet la charge du condensateur. Ensuite, quand la tension de claquage est atteinte, sa résistance décroît brutalement et le condensateur se décharge. La décharge à travers l'arc (étincelle) prend la forme d'une oscillation amortie dont la fréquence est déterminée par le circuit de résonance inductance L / condensateur C couplé avec l’antenne qui constitue le circuit rayonnant.

Une émission en ondes amorties est donc composée d’une série de trains d’ondes et s’il y a n décharges par seconde du condensateur dans le circuit oscillant, l’émission comportera des oscillations de n trains d’ondes par seconde et à la réception, on entendra après détection un son de hauteur n.

La puissance mise en jeu dans le circuit oscillant émetteur est : P = ½•C•U2•n

  • P : en watts.
  • C : en farads.
  • U : en volts. ( tension appliquée au condensateur C )
  • n : nombre de décharges du condensateur C par seconde.

Exemple: C de 1 microfarad, U de 1000 volts, n de 800 décharges par seconde, P sera de 400 watts dans le circuit L C (à la réception le signal est comparable à de la télégraphie type A2A modulé en 800 Hz). À la réception des ondes amorties d’un émetteur à bobine Tesla, l’écoute se rapproche de la tonalité saccadée d’une flûte. À la réception des ondes amorties d’un émetteur à Bobine de Ruhmkorff, l’écoute se rapproche d’un roulement ou d’un crépitement.


Le condensateur peut être chargé, soit par du courant alternatif, soit par du courant continu « haché », élevé à la valeur de tension voulue.

On désigne le « type d'ondes amorties » par la lettre B (avant 1982) : Ondes composées de séries successives d'oscillations dont l'amplitude, après avoir atteint un maximum, diminue graduellement, les trains d'ondes étant manipules suivant un code télégraphique. Ce procédé est à présent abandonné.

Trains d’ondes amorties radiotélégraphiques créés par un émetteur à ondes amorties.

Émetteur à ondes amorties de bord (marine)

Station radiotélégraphique type : émetteur à ondes amorties.

L'émetteur radiotélégraphique de bord est alimenté par le même alternateur et transformateur que l'émetteur à arc qu'il remplace. L’alternateur est monté en bout d’arbre avec le moteur M alimenté par la dynamo du bord. Cette dynamo se trouve dans la salle des machines et risque par conséquent d’être noyée prématurément en cas d'avarie grave, c’est pourquoi il est prévu une alimentation de secours à « vibrateur » qui peut être branchée grâce à l’inverseur. Cette alimentation de secours doit obligatoirement se trouver dans les parties élevées du navire.

A1 (de gauche) est un ampèremètre qui permet de mesurer le courant primaire,
At (de droite) est l’ampèremètre thermique d’antenne.
V est le variomètre d’antenne permettant de parfaire le réglage de celle-ci sur la longueur d’onde désirée.

La bobine L utilise comme condensateur le volume de l'espace entre les spires et entre le circuit d'antenne et la Masse (électricité) ; seule la bobine L est accordable (sans condensateur visible).

Le vibrateur fournit du courant continu haché permettant d’utiliser un transformateur élévateur de tension à partir de sources à basse tension.

Ce matériel est simple et robuste, avec un rendement d'environ 50%. Cependant ces émetteurs ont l'inconvénient de rayonner sur une large bande de fréquence avec une émission très riche en harmoniques et dérivent en fréquence. Ce procédé est à présent abandonné.

Page générée en 0.130 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise