L'induction est historiquement le nom pour un genre de raisonnement qui se propose de chercher des lois générales à partir de l'observation de faits particuliers, sur une base probabiliste.
L'idée de départ de l'induction était que la répétition d'un phénomène en augmente la probabilité de le voir se reproduire. C'est là proprement la façon dont réagit le cerveau chez le chien de Pavlov par exemple. L'accumulation de faits concordants et l'absence de contre-exemples permet ensuite d'augmenter le niveau de plausibilité de la loi jusqu'au moment où on choisit par simplification de la considérer comme une quasi certitude : ainsi en est-il du deuxième principe de la thermodynamique. En aucun cas, cependant, on n'atteindra la certitude, tout contre exemple étant susceptible de remettre immédiatement cette "loi" en cause.
Par la suite, des théorèmes comme celui de Cox donneront à cette démarche inductive empirique une base mathématique ferme, et permettra de calculer les probabilités concernées sans aucun arbitraire à une position de départ près.
Mais la définition précédente est assez impropre. Par exemple, on dirait que 'cette table-ci est lourde, donc cette table-là est lourde' est un exemple d'induction, mais il ne s'agit pas de chercher une loi générale à partir d'un fait particulier. Plus récemment, l'"induction" est donc venu à signifier un genre de raisonnement qui n'assure pas la vérité de sa conclusion en étant donné les prémisses. Cela est le contraire de la déduction, qui est un genre de raisonnement où la conclusion ne peut pas être faux en étant donné les prémisses.
Remarque: Bien qu'associée dans le titre à la logique, la présentation qui suit correspond à la notion « philosophique » de l'induction. En effet, en mathématiques, en logique et en informatique, l'induction complète, aujourd'hui très souvent abrégée en induction, est une autre façon de désigner la récurrence : aussi bien le raisonnement par récurrence que les définitions par récurrence. Le terme est souvent employé pour les généralisations de la récurrence aux bons ordres et relations bien fondées. En raisonnement automatisé, l'abduction est un mode de raisonnement qui vise à émettre une hypothèse pour expliquer un fait et ne doit pas être confondue avec l'induction présentée ici.
Par exemple : Si la loi de la gravitation universelle détermine que, et comment, une pomme qui se détache de son arbre tombera sur le sol, l'observation du mouvement de cette même pomme permet d'établir la loi générale, mais avec une probabilité ou une certitude très faible. Si ensuite, on observe que toutes les pommes et tous les corps tombent de la même façon, si on observe que les corps dans l'espace respectent la même loi, alors la probabilité de la loi augmentera jusqu'à devenir une quasi certitude. Dans le cas de la gravitation universelle, cependant, on a observé que l'orbite de Mercure présentait un effet de précession qui n'était pas expliqué par la loi. La loi de la gravitation universelle est cependant restée utilisée jusqu'à ce qu'Einstein propose la théorie de la relativité générale qui, elle, explique le phénomène. Malgré tout, la gravitation universelle reste utilisée car elle reste valable dans les cas courants, et elle est plus simple à utiliser et à comprendre que la théorie de la relativité.
La plus célèbre des inductions est probablement l'exemple qu'en donne Aristote :
On voit bien que l'induction repose sur une supposition : que « ce sont là tous les animaux sans fiel ». Le syllogisme inductif est dit hypothétique (non-scientifique) :
a une conclusion fausse, car Socrate ne peut pas représenter l'homme, en la matière.
Un exemple célèbre d'induction de Claude Bernard, illustrant la méthode scientifique :
On voit là l'usage de l'induction : à partir d'observations (qui sont toujours des propositions particulières), l'induction produit des propositions générales hypothétiques qui sont ensuite testables. C'est l'analyse de Claude Bernard, ainsi que celle de Karl Popper.
Hume considérait que l'origine de l'induction (l'idée de connexion) est l'habitude. Si cette habitude produit une croyance en l'induction reposant sur une force psychologique, l'induction conserve cependant pour lui une dimension logique très importante puisque Hume établit dans le Traité de la nature humaine les règles de l'induction valide. L'induction a ainsi sa source dans la psychologie humaine, mais sa validité ne s'y réduit pas.
Karl Popper soutient au contraire que « Hume [n'a] jamais reconnu toute la portée de sa propre analyse logique », et propose un renversement : « au lieu d'expliquer notre propension à présumer l'existence de régularité comme un effet de la répétition, j'ai imaginé d'expliquer ce qui est répétition à nos yeux comme le résultat de notre tendance à supposer et à rechercher de la régularité ». Mais Hume ne dit pas autre chose : nous sommes en effet selon lui disposés par l'imagination à trouver de la régularité dans les phénomènes. Sans cette disposition, aucune répétition ne produirait en nous de raisonnement inductif.
Longtemps purement empirique, le processus d'induction a été formalisé par le Théorème de Cox-Jaynes qui confirme la rationalité de la méthode pour la mise à jour des connaissances, la quantifie, et unifie l'univers de la logique booléenne avec celui des probabilités (vues non plus en tant que passage à la limite de fréquences, mais comme traduction numérique d'un état de connaissance dans ce paradigme).