Étant donné que les lasers au CO2 émettent dans l'infrarouge, leur fabrication nécessite des matériaux spécifiques. Classiquement, les miroirs sont de type multicouche sur silicium ou bien faits de molybdène ou d'or. Les fenêtres et les optiques sont en germanium ou en séléniure de zinc. Pour les hautes puissances on préfèrera l'or pour les miroirs et le séléniure de zinc pour les fenêtres. On peut même trouver des fenêtres et des optiques en diamant. Les fenêtres en diamant sont extrêmement onéreuses mais leur bonne conductivité thermique associée à leur dureté les rendent précieuses pour les puissances élevées ou dans les environnements particulièrement sales. Les éléments optiques fabriqués en diamant peuvent même être sablés sans altérer leurs propriétés optiques. À l'origine, les fenêtres et les optiques étaient fabriquées en sel, chlorure de sodium (NaCl) ou chlorure de potassium (KCl). Bien que ces matériaux soient particulièrement peu coûteux, on a abandonné leur usage en raison de leur grande sensibilité à l'humidité ambiante.
Le type le plus simple d'un laser au CO2 consiste en un tube à décharge fermé avec un mélange de gaz comme décrit ci-dessus, avec un miroir à 100% d'un côté, et un miroir semi-transparent pelliculé avec du séléniure de zinc du côté de la sortie. La réflectivité du miroir de sortie est de l'ordre de 5 à 15%.
Les lasers au CO2 fournissent des puissances allant du milliwatt (mW) à plusieurs centaines de kilowatts (kW). Le laser au CO2 peut aussi être facilement commuté (Q-switching) à l'aide d'un miroir rotatif ou d'un commutateur opto-électronique donnant lieu ainsi à des pics de puissance pouvant aller jusqu'au gigawatt (GW) en pointe.
Les transitions se faisant en réalité sur les bandes de vibration et de rotation moléculaires d'une molécule linéaire triatomique, on peut sélectionner la structure rotationnelle des bandes P et R à l'aide d'un système d'accord dans la cavité optique. Étant donné que les matériaux transparents dans l'infrarouge occasionnent des pertes importantes, on utilise presque toujours comme système d'accord de la fréquence un réseau de diffraction. En faisant tourner ce réseau on peut isoler une raie spectrale rotationnelle particulière des transitions électroniques. On peut aussi utiliser un interféromètre de Fabry-Pérot et obtenir ainsi une raie très fine. En pratique, cela veut dire qu'un ensemble continu de raies spectroscopiques séparées d'environ 1 cm-1 (30 GHz), associé à une substitution isotopique, peut être utilisé dans un espace allant de 880 à 1090 cm-1. Cette capacité des lasers CO2 de pouvoir s'accorder linéairement est surtout utilisée dans le cadre de la recherche.