Loi de Student | |
---|---|
| |
Paramètres | k ≥ 1 degrés de liberté, |
Support | |
Densité de probabilité (fonction de masse) | |
Fonction de répartition | 1-γ = ƒ(tγk ), voir tableau en fin d'article |
Espérance | si k = 1 : non définie si k > 1 : 0 |
Médiane (centre) | 0 |
Mode | 0 |
Variance | si k ≤ 2 :
si k > 2 : |
Asymétrie (statistique) | 0 pour k > 3 |
modifier |
La loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ².
Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ² à k degrés de liberté. Par définition la variable
suit une loi de Student à k degrés de liberté.
La densité de notée est donnée par :
où Γ est la fonction Gamma d'Euler.
La densité associée à la variable est symétrique, centrée sur 0, en forme de cloche.
Son espérance ne peut pas être définie pour k = 1, et est nulle pour k > 1.
Sa variance est infinie pour k ≤ 2 et vaut pour k > 2.
Le calcul de la distribution de Student a été publié en 1908 par William Gosset pendant qu'il travaillait à la brasserie Guinness à Dublin. Il lui était interdit de publier sous son propre nom, c'est pour cette raison qu'il publia sous le pseudonyme de Student. Le test t et la théorie sont devenus célèbres grâce aux travaux de Ronald Fisher, qui a qualifié cette distribution de « distribution de Student ».
Ce chapitre présente une méthode pour déterminer l'intervalle de confiance de l'estimateur de l’espérance μ d’une loi normale dont la variance σ² est inconnue.
Théorème — L'intervalle de confiance de μ au seuil de confiance α est donné par: ,
avec
Soient x1, …, x n n variables indépendantes distribuées suivant une même loi normale d’espérance μ (à déterminer) et de variance σ² (inconnue).
Afin de parvenir au résultat, il est nécessaire d’introduire les variables et s.
Soit
La variable suit la loi normale d’espérance μ et de variance .
Soit
La variable aléatoire s suit la loi du χ² à n - 1 degrés de liberté.
Remarque : ce résultat utile se démontre à partir de la propriété définissant la loi du χ² en tant que somme des carrés de variables normales centrées et réduites indépendantes 2 à 2, mais il n’en est pas pour autant la conséquence directe : en particulier les variables ne sont pas indépendantes entre elles.
Pour n grand, la variance de tend vers 0, et la valeur d’une réalisation de constitue ainsi une estimation de l’espérance μ, qui est également l’espérance de la loi normale suivie par les variables x1, …, x n. Néanmoins, seule la connaissance préalable de la variance σ² de cette loi permet de caractériser un intervalle de confiance pour la variable .
Par contre, il est possible de caractériser un intervalle de confiance rigoureux pour la variable suivante :
avec
En effet, moyennant quelques simplifications, la variable T0 peut se réécrire comme
avec
la variable Z suit la loi normale centrée et réduite, et nous avons vu ci-dessus que la variable s suit la loi du χ² à n - 1 degrés de liberté. De plus, il est possible de démontrer que Z et s sont indépendantes. Par définition, T0 suit donc la loi de Student à k = n - 1 degrés de liberté.
La distribution de la variable T0 est donc connue indépendamment de σ², et par conséquent les intervalles de confiance qui lui sont associés sont également connus. Ainsi, il est possible d’obtenir un intervalle de confiance pour μ à partir d’une réalisation des variables x1, …, xn, de laquelle on déduit des valeurs de et S. La suite de ce chapitre détaille la procédure permettant la détermination de cet intervalle de confiance.
Pour une variable T suivant la loi de Student à k degrés de liberté, on définit tγk comme
Ceci revient à imposer que 1-γ soit l'image de tγk par la fonction de répartition de la loi de Student. La quantité tγk est également appelé le quantile d’ordre 1-γ de la loi de Student à k degrés de liberté (voir tableau des valeurs de tγk ci-dessous).
Dans ce cadre, si tγk > 0, alors la probabilité d’obtenir -tγk < T0 < tγk est égale à 1-2γ.
Or on a
La probabilité d’obtenir est elle aussi égale à 1-2γ. Le niveau de confiance α associé à cet intervalle est donc α = 1-2γ.
Le niveau de confiance α correspond à la probabilité que l’espérance μ de la loi normale se trouve à l’intérieur de l’intervalle de confiance. Par exemple pour α = 0,95, on a un niveau de confiance de 95 %, correspondant à γ = (1-α)/2 = 0,025.
La courbe ci-dessous illustre la notion de niveau de confiance en représentant celui-ci comme une intégrale (aire de la zone en bleu).
Dans la courbe ci-dessus, les frontières entre la zone centrale et les deux zone latérales identiques correspondent à t = tγk et t = -tγk .
En résumé, l’intervalle de confiance de l’espérance μ d’une loi normale de variance quelconque inconnue peut être déterminé à partir des valeurs de n variables indépendantes x1, …, xn suivant toutes cette même loi. Pour un niveau de confiance donné α, cet intervalle est le suivant :
avec
et