Microscope confocal - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Schéma de principe du microscope confocal par Marvin Minsky en 1957

Un microscope confocal est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ 400 nm) appelées « sections optiques ». En positionnant le plan focal de l’objectif à différents niveaux de profondeur dans l’échantillon, il est possible de réaliser des séries d’images à partir desquelles on peut obtenir une représentation tridimensionnelle de l’objet. L'objet n'est donc pas directement observé par l'utilisateur ; celui-ci voit une image recomposée par ordinateur.

Le microscope confocal fonctionne en lumière réfléchie ou en fluorescence. La plupart du temps, on utilise un laser comme source de lumière. On parle alors de microscope confocal à balayage laserMCBL (en anglais CLSM pour confocal laser scanning microscope).

Le principe du microscope confocal a été décrit par Marvin Minsky en 1953, mais ce n’est que dans la fin des années 1980 que des modèles commerciaux sont apparus, rendant cette technique accessible à de nombreux laboratoires. La microscopie confocale est très utilisée aujourd'hui en biologie ainsi qu’en sciences des matériaux.

Principe et avantages

Limite du microscope optique classique

En microscopie optique à champ large, pour qu'une image soit nette, il faut que l'objet soit dans le plan focal du système optique. Lorsqu'un objet est épais, présente un relief important, ou bien lorsqu'il est incliné par rapport à l'objectif, seule une partie de l'objet est nette dans l’image (voir l'article sur la profondeur de champ).

De plus, plus le grossissement est élevé, plus cette profondeur est faible, ce qui empêche d'avoir une image nette sur la totalité d'un objet un peu étendu. Ceci est particulièrement ennuyeux pour les objets allongés comme les nerfs ; ils sont donc flous sur une partie de leur trajet quelle que soit l'habilité du préparateur.

En fait, la microscopie à champ large pose un problème pour tous les objets ayant une certaine épaisseur. En effet, la lumière émise par le plan focal, donc nette, est perdue dans la fluorescence émise par les plans adjacents au plan focal, qui par définition sont flous.

Principe du microscope confocal

Pour résoudre ce problème, on éclaire la surface non plus par un faisceau de lumière blanche, mais par un rayon laser, concentré par une lentille, qui balaie la surface en positionnant un sténopé (pinhole en anglais) devant le détecteur, dans un plan focal conjugué au plan focal de l’objectif (plans confocaux). De cette manière, seuls les photons provenant du plan focal passent le sténopé et participent à la formation de l’image, d'où le nom « confocal » (synonyme de monofocal).

La lumière provenant des plans adjacents (floue) est arrêtée par les bords du trou. Il est ainsi possible d'obtenir une coupe optique nette correspondant uniquement au plan focal. En faisant varier ce plan on obtient une succession de coupes donnant des informations nettes et précises dans les trois dimensions de l'objet observé.

La microscopie confocale permet des études sur du matériel fixé, mais permet également d'étudier des phénomènes dynamiques, sur des cellules ou des tissus vivants, en particulier grâce aux molécules de la famille GFP (Green Fluorescent Protein). Par ailleurs les évolutions permanentes de la technique permettent aujourd'hui de se pencher sur des processus d'interaction moléculaire (Technique du FRET), ou de dynamique moléculaire (FRAP, FLIP).

Résolution

Exemple d'application.

La résolution d’un microscope confocal peut être déterminée expérimentalement ou théoriquement (par exemple avec PSF Lab) à l’aide de la fonction d'étalement du point (Point Spread Function ou PSF en anglais). En microscopie optique conventionnel l’échantillon est illuminé en champ large et imagé par l’objectif de microscope en sorte que la PSF du système entier est donnée uniquement par la PSF de détection de l’objectif de microscope utilisé. En microscopie confocale, par contre, la lumière (souvent d’une source lumineuse cohérente comme un laser) est focalisée sur l’échantillon et dans ce cas la PSF totale est donc le produit de la PSF d’illumination et de la détection. Ceci mène à une résolution latérale légèrement meilleure (180-160 nm) à celle attendue pour un microscope optique conventionnel (200 nm). La résolution en Z (profondeur) est de l’ordre de 600 nm en microscopie confocale.

Page générée en 0.191 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise