Paramètres de Milankovi? - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Confirmation de cette théorie

Il s'agit ici bien sûr d'une théorie parmi d'autres, mais les scientifiques pensent qu'elle est la plus probable pour expliquer les changements climatiques naturels. Suite au forage de Vostok (Antarctique), les chercheurs ont pu étudier le rapport 18O/ 16O (qui est noté δ 18O) dans la glace extraite.
En effet, ils se sont aperçus que la courbe représentant le rapport 18O/ 16O avait des similitudes avec la courbe issue des cycles de Milanković. Et étant donné que la correspondance température / δ 18O est fermement établie, on peut alors penser que les paramètres de Milanković peuvent être la cause des changements climatiques naturels.

Depuis que ces variations orbitales sont établies, les scientifiques tentent de trouver un modèle capable de relier insolation à 65° et δ18O marqueur des variations passées du climat. Ce n'est pas évident à trouver car la fonte d'un inlandsis est mal cernée. Dans le passé récent (-1 Myr), la périodicité est de l'ordre de 100 000 ans avec environ 90 000 ans d'englacement et 10 000 de dégel ; mais au-delà , le forçage est plutôt à une période de 41 000 ans (c'est la transition du Pléistocène moyen), correspondant à un forçage plus direct par l'obliquité. Les forages benthiques permettent de remonter jusqu'au Néogène, ce qui a permis de fonder la nouvelle échelle de temps géologique (ATNTS 2004).

Les conséquences sur Terre

Les variations de tous les paramètres

Les conséquences de l'excentricité terrestre

L'excentricité est l'un des facteurs les plus importants dans les changements climatiques naturels puisque la Terre au périhélie peut recevoir de 20 à 30% d'énergie (émise par le Soleil) de plus qu'à l'aphélie. Étant donné que l'excentricité n'est pas liée aux changements de saisons, cela peut avoir deux conséquences différentes :

  • Si l'été correspond au périhélie et l'hiver à l'aphélie alors la Terre reçoit beaucoup d'énergie en été et moins en hiver, donc il y a des étés «chauds» et des hivers «froids».
  • Si par contre l'été correspond à l'aphélie et l'hiver au périhélie (comme «plus ou moins» actuellement dans l'hémisphère nord), la Terre reçoit peu d'énergie en été mais plus en hiver, donc les étés sont «frais» et les hivers sont «doux».

Les conséquences de l'obliquité terrestre

L'obliquité possède une influence sur les saisons. En effet, si la Terre est dans une période de forte inclinaison par rapport au Soleil, alors les saisons seront très marquées (différences importantes entre été et hiver) et à l'inverse une faible inclinaison homogénéise les saisons (peu de différences entre l'été et l'hiver).
Cependant, il faut préciser que ces différences se sentent seulement lorsque l'on s'éloigne de l'équateur, où l'obliquité a peu d'influence (dans un climat équatorial on trouve 2 périodes très chaudes et très humides aux équinoxes et 2 périodes relativement froides et sèches aux solstices, dont l'intensité varie avec l'obliquité).

Les conséquences de la précession terrestre

La précession a deux conséquences. La première n'a aucune influence sur les changements climatiques, (elle est indiquée pour information), l'étoile qui pointe le pôle nord céleste change avec le temps. En effet, aujourd'hui il s'agit de α Ursae Minoris mais dans 12 000 ans, ce sera Véga.

Plus intéressant, la précession des équinoxes n'influence pas directement les changements de température ; en fait la précession est responsable de la date du changement de saisons (printemps/été par exemple). Il faut savoir que les saisons sont délimitées par ce que l'on appelle la ligne des solstices et la ligne des équinoxes.

Exemple simple : lorsque la Terre dépasse la ligne des solstices le jour du solstice d'été, la Terre rentre dans l'été.

La précession agit donc sur la croix formée par ces lignes, elle la fait tourner autour du Soleil. En d'autres termes, le 21 juin n'est pas (astronomiquement parlant) toujours le jour du solstice d'été.
De cela, nous pouvons donc dire qu'une année selon le calendrier n'équivaut pas à une année astronomique.

Plus simplement, les 365,25 jours ne correspondent pas à un tour (parfait) de la Terre autour du Soleil.

Cet effet est donc indirect, mais pour les scientifiques, il est important.

Les conséquences de ces trois facteurs

Les variations et la conséquence sur la température. 1 kyr = 1 KiloYeaR ( = 1000 ans )

Ces trois facteurs combinés ont donc différentes conséquences:

  • La variation d'énergie solaire reçue sous les hautes latitudes au cours de l'année.
  • Les différences de température entre les continents et les océans à cause de l'albédo.
  • Les variations sur les changements de saison (plus élevées aux hautes latitudes).
  • Les différences de température entre les hémisphères dues à l'inclinaison.
  • Par contre, ces paramètres n'ont aucune influence sur la quantité totale annuelle d'énergie solaire reçue par la Terre.
Page générée en 0.086 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise