On peut réellement parler de révolution d’un point de vue agro-alimentaire principalement. Car avec la compréhension au moins globale de la réaction de Maillard, on explique une multitude de processus utilisés quotidiennement et dont la maîtrise a permis des progrès loin d’être négligeables. Contrôler la réaction non enzymatique de Maillard, c’est contrôler en fait la conservation des produits, leur goût, leur aspect. Autant de critères qui déterminent le choix d’un produit.
Ainsi, en faisant varier de manière infime les paramètres environnementaux, on modifie le processus réactionnel (la cinétique) et les différences de résultats peuvent être impressionnantes. Une variation peut rendre la réaction agréable ou indésirable. On passe du jambon aux arômes délicats au goût de brûlé dans un yaourt. De même en médecine, on passe de l’ennemi des vaisseaux ou des yeux pour les diabétiques au bon samaritain quand il s’agit de permettre un suivi de ces mêmes diabétiques.
Tous les jours, nous assistons sans nous en douter à de très nombreuses réactions de Maillard. Depuis le grillé du rôti jusqu'au bon goût du pain, celles-ci sont en effet présentes dans presque toutes les préparations culinaires, en particulier dans les viandes cuites. La chaleur du four ou de la plaque électrique augmente alors beaucoup la rapidité des transformations et c’est pourquoi nous pouvons voir notre steak passer de « saignant » à « bien cuit » en quelques minutes. C’est l’exemple le plus courant de réaction de Maillard en cuisine, que l’on pourrait qualifier de réaction « à chaud ». C’est aussi la plus facilement observable grâce au brunissement rapide de la viande produit par les mélanoïdines. Mais il existe aussi des exemples de réaction « à froid » qui ont lieu sans nécessiter de chauffage, donc en dehors de toute cuisson.
C’est le cas par exemple pour les jambons crus d’Espagne, des jambons au goût si spécial que l’Union européenne leur a accordé une appellation d'origine contrôlée. Cette saveur se forme au cours de la fabrication grâce à des réactions spontanées produisant des arômes.
Selon le procédé traditionnel, les porcs destinés à la fabrication de jambons doivent être élevés en liberté et être nourris de glands et d’herbe. Après l’abattage, la viande est conservée à 0 °C pendant deux jours puis frottée avec du sel et du salpêtre. Elle est ensuite placée pendant une semaine sur un lit de sel à 3 °C environ. Lors de cette phase, les protéines se décomposent et libèrent des acides aminés. Les jambons sont ensuite conservés sans sel pendant deux ou trois mois, toujours à basse température. Progressivement on augmente alors la température jusqu’à 18 °C, et après un mois et demi à température ambiante, vient la maturation finale. Celle-ci s’effectue dans une cave pendant 14 à 22 mois. La fabrication complète dure près de deux ans après quoi les jambons sont prêts à être mangés. Ils ont pris une couleur foncée qui trahit la présence de composés colorés, dont les mélanoïdines.
À partir de 1990, des scientifiques espagnols ont commencé à s’intéresser à la fabrication de ces jambons. Ils ont montré que des acides aminés libérés lors du salage étaient dégradés pendant la longue période de maturation qui suivait, entre autres par la réaction de Maillard. Celle-ci produit de nombreux composés, qui s’accumulent dans la viande. La quantité de ces produits croît avec la durée de la maturation, ce qui explique la longueur de celle-ci, qui permet d’obtenir plus de composés, donc plus de goût. En outre, la réaction de Maillard produit des mélanoïdines, qui seraient responsables de la couleur des jambons. Mais d’autres réactions interviennent également dans la formation de composés aromatiques. L’alimentation des porcs avec des glands produit par exemple des alcanes ramifiés. La dégradation de Strecker intervient aussi en dehors de la réaction de Maillard.
C étant électrophile et N au contraire nucléophile, ils vont avoir tendance à s'attirer. Le O de la fonction cétone en 3e position transforme alors sa double liaison avec le carbone en 2 doublets non liants et se détache de la molécule sous la forme O2–. Le N va alors faire de même avec les deux liaisons avec ses hydrogènes qui vont se retrouver en défaut d’électrons dans le milieu (H+). Les deux ions H+ en défaut d’électrons vont alors se lier au O2– qui, lui, est excédentaire, formant une molécule d’eau. Le N va alors transformer ses deux doublets non liants en double liaison avec le C.
Le O plus électronégatif va rompre la liaison avec le H dont il prend l’électron. Ce H va se lier à l’oxygène de la branche principale, qui aura rompu une de ses liaisons avec le carbone pour l’accueillir. Le O va se séparer ensuite du C par le même procédé, emportant là encore les deux électrons de la liaison. Mais la perte d’électrons n’est pas finie pour le C car l’oxygène avec qui il formait une double liaison va emporter les deux électrons de celui-ci en cassant les deux doubles liaisons. Enfin, le C auquel il restait lié va lui aussi se servir et prendre en plus le dernier électron qui lui restait sur sa couche externe. Heureusement pour lui, deux oxygènes libérés par les réactions successives et excédentaires chacun de deux électrons vont se lier à lui, formant ainsi du dioxyde de carbone stable à l’état gazeux.
Une molécule d’eau, nécessaire à la dégradation, va se décomposer en ion H+ et OH–. Le H+ va se lier à l’azote par l’intermédiaire de son doublet non liant, et l’azote pour récupérer sa stabilité électronique va transformer une de ses liaisons avec le carbone de l’acide aminé en doublet non liant. L’ion OH– resté dans le milieu va alors se décomposer selon le schéma classique en ion H+ et O2–(car l’oxygène est plus électronégatif que le H). L’ion O2– va créer une première liaison avec le carbone de l’acide aminé, l’ion H+ va se lier au doublet de l’azote qui selon le procédé que l’on vient d’évoquer, provoquant une scission pour récupérer son doublet. Le O– va alors transformer son dernier doublet excédentaire en liaison avec le C.
Cette réaction, qui intervient lors de la troisième étape de Maillard, peut aussi se réaliser entre un acide aminé et un acide gras. Elle donne naissance à des composés aromatiques, des aldéhydes. Cela justifie le fait que l’appellation d’origine soit accordée aux jambons provenant de porcs de race ibérique, dont la chair est riche en acides gras.
Cependant, si la réaction de Maillard se révèle bien utile en cuisine pour rendre nos aliments plus savoureux, elle peut être gênante en particulier lors du séchage des pâtes alimentaires. À la fin de leur fabrication, celles-ci sont en effet chauffées pour éliminer l’eau qu’elles contiennent. À la fin du processus, des réactions de Maillard peuvent se développer, donnant aux pâtes une couleur rougeâtre peu appétissante. La même réaction pourrait d’ailleurs avoir des conséquences plus graves. Elle formerait en effet des composés comme les carbolines, des amines hétérocycles dérivées du tryptophane. Ces composés semblent à hautes doses avoir des effets destructeurs sur le fonctionnement des récepteurs cellulaires (adrénalines, …) et les sites actifs des enzymes. Cependant, la toxicité de ces composés n’est pas prouvée car on les trouve aussi dans des aliments inoffensifs comme les reines-claudes ou les bananes.