Robert Gilbert (chimiste) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

La biosynthèse de l'amidon

En 2007, sa nomination à l'Université du Queensland lui permet de réorienter ses recherches sur la biosynthèse de l'amidon et l'explication des relations synthèse-structure-propriétés, en appliquant la même démarche que pour la polymérisation en émulsion: l'isolation de chaque étape (enzymatique dans le cas de l'amidon) au sein d'un système complexe, par l'interprétation de données issues de la chimie analytique (principalement de la Chromatographie d'Exclusion Stérique (S.E.C.) et de l'Asymmetric Flow Field-Flow Fractionnation (AF4)). Les résultats attendus permettront d'arbitrer les mécanismes postulés jusqu'ici, ainsi que d'approfondir la compréhension de la formation et de la caractérisation des (bio)polymères hyperbranchés

Brevets

  • CJ Ferguson, RJ Hughes, BTT Pham, BS Hawkett, RG Gilbert, AK Serelis, CH Such. Aqueous dispersions of polymer particles. PCT/AU02/01735 (2002)
  • S Peach, BR Morrison, RG Gilbert. Finely divided polymer dispersions, their production and use. Ger. Offen. DE 19929395 (2000)
  • N Subramaniam, R Balic, RG Gilbert. Modified rubber polymer latex. PCT/AU98/00191 (1998)
  • D Kukulj, TP Davis, RG Gilbert. Polymerization reactions under miniemulsion conditions. PCT PN6696 (1997)

La polymérisation en émulsion

La polymérisation en émulsion est le procédé industriel le plus courant pour produire une large variété de polymères, rentrant dans la composition des revêtements, peintures, adhésifs et caoutchoucs pneumatiques. Il s'agit d'un procédé complexe impliquant des processus séparés et simultanés qui a été longtemps abordé d'un point de vue purement empirique. Le travail de Bob Gilbert consista à développer des modèles mathématiques et des protocoles expérimentaux isolant certains processus individuels.

De la même manière que pour les réactions unimoléculaires, la clé de la compréhension repose sur l'évaluation des taux de chaque étape prise individuellement. Ces étapes sont l'initiation (la vitesse à laquelle une chaîne en croissance apparaît), la propagation (la vitesse d'addition des monomères sur la chaîne en croissance), la perte des radicaux (à travers la terminaison ou les réactions de transferts) et la nucléation (la formation des particules de latex). À partir des modèles développés précédemment, il parvint à extraire des données ciblées, notamment sur la dépendance temporelle des coefficients et la distribution en masses moléculaires et en taille des particules formées. De nouvelles techniques expérimentales, comme la relaxation à radiolyse γ qui permet d'isoler la perte d'activité des radicaux des étapes de propagation et d'initiation.

Les modèles mathématiques de Bob Gilbert ont permis de révéler les facteurs principaux contrôlant chaque étape et d'appliquer cette compréhension à n'importe quel système d'émulsion, validant ou invalidant les hypothèses postulées précédemment. L'utilisation des données fournies par ses modèles a également permis de montrer que la simple diffusion expliquait la perte de radicaux dans les particules. Les mécanismes d'initiation lors de la polymérisation en émulsion furent aussi expliqués par l'entrée des radicaux dans la particule (en termes de thermodynamique et de préceptes cinétiques) par une théorie qui identifie le processus de production d'espèces actives en surfaces dans la phase aqueuse. Ce modèle permit enfin de démontrer que le coefficient d'entrée était indépendant de la taille et des propriétés de surface des particules, au contraire de ce qui était postulé auparavant; il en résulta aussi des modèles a priori qui prédissent la formation des particules et leur distribution en masse

La compréhension des autres étapes de la polymérisation en émulsion fut également approfondie. Les avancées réalisées grâce à la polymérisation par laser pulsé (P.L.P.), en collaboration avec d'autres équipes, permirent d'obtenir des coefficients de propagation fiables et d'en déduire les paramètres d'Arrhénius correspondants à chaque grande famille de monomères (styrèniques, acryliques, méthacryliques, acrylamides). Ses modèles permirent enfin d'expliquer que la diffusion contrôlait la réaction de terminaison.

L'apport de Bob Gilbert à la polymérisation en émulsion a permis de comprendre les mécanismes en jeu lors de la polymérisation en émulsion, dont la maîtrise était jusque-là essentiellement empirique. Grâce à ses modèles, il est aujourd'hui possible, dans le cas de systèmes simples, d'élaborer des matériaux aux propriétés prédictibles et s'applique également aux nouvelles techniques de polymérisation radicalaire contrôlée, comme la R.A.F.T.

Page générée en 0.103 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise