Un petit dodécaèdre étoilé apparait dans mosaïque du sol de la basilique Saint-Marc de Venise en Italie. Il date du XVe siècle et est quelquefois attribué à Paolo Uccello.
Dans sa Perspectiva corporum regularium (Perspectives des solides réguliers) [1], un livre de gravures sur bois publié au XVIe siècle, Wenzel Jamnitzer dépeint le grand dodécaèdre. Il est clair, à partir de l'arrangement général du livre, qu'il considère les cinq solides de Platon comme réguliers, sans comprendre la nature régulière de son grand dodécaèdre. Il dépeint aussi une figure souvent confondue avec le grand dodécaèdre étoilé, bien que les surfaces triangulaires des bras ne sont pas tout à fait coplanaires, il possède 60 faces triangulaires.
Les solides de Kepler ont été découverts par Johannes Kepler en 1619. Il les obtint par stellation du dodécaèdre convexe régulier, d'abord en le traitant comme une surface plutôt qu'un solide. Il nota qu'en étendant les arêtes ou les faces du dodécaèdre convexe jusqu'à ce qu'elles se rencontre à nouveau, il pouvait obtenir des pentagones étoilés. De plus, il reconnut que ces pentagones étoilés étaient aussi réguliers. Il trouva deux dodécaèdres étoilés de cette manière, le petit et le grand. Chacun possède la région convexe centrale de chaque face "cachée" avec l'intérieur, avec seulement le bras triangulaire visible. L'étape finale de Kepler fut de reconnaitre que ces polyèdres coïncidaient avec la définition des solides réguliers, même s'ils n'étaient pas convexes, comme l'étaient les solides de Platon traditionnels.
En 1809, Louis Poinsot redécouvrit ces deux figures. Il a considéré aussi les sommets étoilés aussi bien que les faces étoilés, et ainsi découvrit deux étoiles régulières de plus, le grand icosaèdre et le grand dodécaèdre. Certaines personnes appellent celles-ci les solides de Poinsot. Poinsot ne savait pas s'il avait découverts tous les polyèdres étoilés réguliers.
Trois ans plus tard, Augustin Cauchy démontra que la liste était complète, et presque un demi-siècle plus tard Bertrand fournit une démonstration plus élégante en facettant les solides de Platon.
Les solides de Kepler-Poinsot reçurent leurs noms l'année suivante, en 1859, par Arthur Cayley.