Stationnarité d'une série temporelle - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Types de non-stationnarité

Lorsqu'une ou plus des conditions de stationnarité n'est pas remplie, la série est dite non-stationnaire. Ce terme recouvre cependant de nombreux types de non-stationnarité, dont deux sont ici exposés.

Stationnarité en tendance

Définition — Une série est stationnaire en tendance si la série obtenue en "enlevant" la tendance temporelle de la série originale est stationnaire.

La tendance temporelle (ou trend en anglais) d'une série chronologique est sa composante liée au temps.

Exemple: Soit le processus suivant:  X_{t}=1.2t + \epsilon_t \qquad avec εt un bruit blanc.

Ce processus est non-stationnaire car son espérance augmente avec le temps (condition 1 violée). Mais la série Yt obtenue en soustrayant l'effet de la tendance temporelle, Yt = Xt − 1.2t est stationnaire:

 Y_t=1.2t + \epsilon_t -1.2t = \epsilon_t \qquad qui est équivalent à un bruit blanc, stationnaire par définition.

Stationnarité en différence

Définition — Une série est stationnaire en différence si la série obtenue en différenciant les valeurs de la série originale est stationnaire.

L'opérateur de différence est noté: ΔXt = XtXt − 1

Ordre d'intégration d'une série temporelle

Définition — Une série temporelle est dite intégrée d'ordre d, que l'on note I(d), si la série obtenue après d différenciations est stationnaire.

Exemple: Soit la marche aléatoire pure:  X_{t}=X_{t-1} + \epsilon_t \qquad avec εt un bruit blanc.

On peut montrer qu'une marche aléatoire n'est pas stationnaire. On voit ici qu'elle est intégrée d'ordre 1, la série des différences est en effet stationnaire:

 \Delta X_t=X_{t}-X_{t-1}=X_{t-1} + \epsilon_t -X_{t-1}= \epsilon_t\qquad équivalent à un bruit blanc, stationnaire par définition.

Page générée en 0.060 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise