Une des grandes questions dans l'étude de séries temporelles (ou chronologiques) est de savoir si celles-ci suivent un processus stationnaire. On entend par là le fait que la structure du processus sous-jacent supposé évolue ou non avec le temps. Si la structure reste la même, le processus est dit alors stationnaire.
Définition — Soit un processus temporel à valeurs réelles et en temps discret . Il est dit stationnaire au sens fort si pour toute fonction f mesurable:
Interprétation:
On s'intéresse ici à la distribution conjointe de probabilité du processus. La fonction de densité jointe est-elle la même que l'on prenne les t premières variables ou que l'on prenne les t+k suivantes? Si oui, le processus est alors stationnaire au sens strict. Autrement dit, si le processus est stationnaire, ses propriétés ne sont pas affectées par un changement de notre "repère temporel": que l'on regarde au point t ou au point t+k la série aura toujours le même comportement.
Comme la loi de probabilité d'une distribution d'une série de données est très difficile à estimer, une définition moins stricte de la stationnarité a été introduite.
La notion de stationnarité est importante dans la modélisation de série temporelles, le problème de régression fallacieuse montrant qu'une régression linéaire avec des variables non-stationnaires n'est pas valide. Plus précisément, la distribution des paramètres de la régression ne suit plus une loi de Student mais un mouvement brownien. Dans le cas où les variables ne sont pas stationnaires, un concept très proche, celui de coïntégration (en), permet de déterminer le type de modèle à utiliser.
La stationnarité joue également un rôle important dans la prédiction de séries temporelles, l'intervalle de prédiction étant différent selon que la série est stationnaire ou non.
Définition — Soit un processus temporel à valeurs réelles et en temps discret . Il est dit stationnaire au sens faible (ou "de second ordre", ou "en covariance") si
Interprétation:
Si la fonction de densité n'est pas connue, ce qui est souvent le cas, il est utile de pouvoir déterminer par un test si la série est stationnaire ou non. Il en existe deux types, avec la stationnarité comme hypothèse nulle ou hypothèse alternative:
L'hypothèse nulle est la stationnarité.
L'hypothèse nulle est la non-stationnarité.