Déterminer si un graphe peut être ou non coloré en 2 couleurs est très facile : techniquement, il suffit de colorer arbitrairement un sommet de chaque composante connexe avec une couleur et ensuite de propager cette décision en colorant les sommets voisins avec l'autre couleur et ainsi de suite. Si l'on rencontre un sommet encore non coloré voisins de deux sommets de couleur différentes alors le graphe ne peut être biparti. C'est un problème soluble en temps polynomial.
En revanche, déterminer si un graphe peut être ou non coloré en k couleurs pour k>3 est un problème NP-complet. La preuve de Appel et Haken donne un algorithme pour colorer tout graphe planaire avec le minimum de couleur possible (donc au-plus quatre couleurs) en temps quadratique.
D’autres problèmes plus pratiques peuvent se réduire à la résolution de coloration de graphe, la solution peut alors être appliquée pour améliorer l'organisation de tâches.
S'agissant du coloriage des cartes elles-mêmes, le théorème a en fait un intérêt limité. Par exemple, si on souhaite dessiner une carte du monde en attribuant des couleurs différentes aux pays limitrophes :
On voit que l'énoncé classique du théorème des quatre couleurs n'est bien sûr pas une caractérisation des graphes dont le nombre chromatique est inférieur ou égale à 4 puisque le K3,3 n'est pas planaire mais est biparti. D'autre part, pour des raisons de complexité algorithmique, il ne peut exister de caractérisation simple des graphes k-colorables pour k fixé supérieur à 3. Le théorème des quatre couleurs se généralise aux graphes sans mineur K5, puisque le nombre chromatique de ces graphes vaut au plus 4 (et c'est une des motivations de la conjecture d'Hadwiger). Une généralisation plus forte encore a été donnée récemment par Guenin :
Ces résultats plus forts sont basés sur des preuves utilisant le théorème des quatre couleurs lui-même, par conséquent ils n'en apportent pas de nouvelle démonstration.
On peut aussi considérer le problème du coloriage de cartes tracées sur des surfaces autres que le plan. Sur la sphère, le problème est le même (pour le voir, il suffit de retirer un point de la sphère intérieur à l'une des régions, et d'effectuer une projection stéréographique). Pour des surfaces fermées de genre positif, le nombre de couleurs nécessaires dans le pire des cas, p, dépend de la caractéristique d'Euler de la surface, χ, selon la formule
où les crochets extérieurs désignent la fonction partie entière.
Pour une surface orientable de genre g, cela revient à
Cette formule fut conjecturée par Heawood en 1890 et prouvée par Ringel et Youngs en 1968. On remarquera que pour g=0, elle redonne le théorème des quatre couleurs, mais bien sûr, les preuves précédentes ne s'appliquent qu'au cas où g>0.
Par exemple, le tore a une caractéristique d'Euler χ = 0 (et est de genre g = 1 : un tore n'a qu'un "trou") et donc p = 7 ; 7 couleurs suffisent donc pour colorer n'importe quelle carte sur le tore, et l'exemple de la figure montre que cela peut être nécessaire ; des exemples analogues permettent de montrer que la valeur de la conjecture de Heawood est la plus petite possible.
Il n'y a pas de généralisation dans l'espace car tous les graphes, et en particulier le graphe complet, sont plongeables dans l'espace 3D, en d'autres termes, en utilisant n tiges flexibles, il est possible de les arranger pour que chacune touche toutes les autres, et donc n peut être choisi aussi grand qu'on veut, sans qu'apparaisse un "théorème des n couleurs".