Tore - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Tore

Un tore est un solide géométrique représentant un tube courbé refermé sur lui-même. Le terme « tore » comporte différentes acceptions plus spécifiques selon le contexte :

Le solide de révolution

Un tore est engendré par la rotation d'un cercle autour d'un autre cercle.
Le tore est également obtenu par recollement des côtés opposés d'un carré

Un tore désigne le volume de l'espace euclidien R3 engendré par la rotation d'un cercle C de rayon r autour d'une droite affine D située dans son plan à une distance R de son centre. Dans cette acception, certains auteurs désignent par tore plein le solide obtenu, réservant le terme tore pour la surface correspondante. À l'action d'une isométrie affine directe près, le tore (plein) est uniquement déterminé par les deux paramètres réels R et r.

La forme du tore (plein) dépend du signe de R-r :

  • Pour R = 0, alors le tore (plein) correspondant est une boule (solide obtenu par la rotation d'un disque autour de l'un de ses diamètres). Certains auteurs réservent la dénomination tore pour R-r positif, voire strictement positif.
  • Si R < r, le tore est dit « croisé » et ressemble visuellement à une citrouille ; le solide est topologiquement une boule fermée de l'espace tridimensionnel, et sa surface une sphère.
  • Si R = r, le tore est dit « à collier nul ».
  • si R > r, le tore est dit « ouvert » et ressemble à une chambre à air (exemple francophone) ou à un donut (exemple anglophone).
Les trois types de tores : Tore croisé, à collier nul, et ouvert.

Aire et volume

Pour R-r positif ou nul, on a :

  • Aire du tore : A = 4 π² r R ;
  • Volume intérieur du tore : V = 2 π² r² R.

Les théorèmes de Guldin permettent d'obtenir ces résultats, et aussi de déterminer les formules de l'aire et du volume du tore croisé (pour R<r).

Groupe des isométries

Pour R>0, parmi les isométries remarquables du tore, on distingue :

  • Les rotations ru d'axe (supposé orienté) D et d'angle u ;
  • Le retournement a par rapport au plan affine P orthogonal à D passant par le centre de C ;
  • Le retournement bQ par rapport à tout plan affine Q contenant D ;
  • La symétrie centrale s par rapport au projeté orthogonal O de C sur D ;
  • Les symétries axiales par rapport à toute droite passant par O et contenue dans P ;
  • Les composées d'une rotation ru par le retournement a.

Evidemment, la symétrie centrale et les symétries axiales s'obtiennent comme composées des retournements décrits. Le groupe G des isométries du tore est isomorphe au produit direct de Z/2Z par le produit semi-direct de S1 par Z/2Z :

\scriptstyle G=Z/2Z\times (R/2\pi Z\rtimes Z/2Z) .

Un isomorphe naturel est décrit comme suit :

  • ru correspond à (0,u,0) ;
  • a correspond à (1,0,0) ;
  • Pour un plan Q fixé arbitraire, bQ correspond à (0,0,1).

En particulier, bru(Q)=rubQr-u correspond à (0,u,1) ; s correspond à (1,π,0) ; ...

Colorier un tore

Le théorème des quatre couleurs ne s'applique pas pour un tore : il est possible de diviser la surface d'un tore en 7 zones de couleurs différentes (maximum) de sorte que chacune touche toutes les autres.

Applications

  • En recherche nucléaire pour la production d'énergie par fusion, dans les réacteurs de type tokamak, le plasma est contenu par de forts champs magnétiques dans une chambre de forme torique. L'un de ces réacteurs porte d'ailleurs le nom de Tore Supra. C'est aussi la forme des chambres à vide des accélérateurs de particules du type synchrotron (en négligeant les canaux d'entrée et de sortie).
  • En électricité, la forme idéale du bobinage d'un transformateur est celle du tore.
Page générée en 0.972 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise