En topologie, le terme tore est réservé pour désigner des espaces topologiques bien définis à difféomorphisme près. Il existe plusieurs présentations, toutes équivalentes. On appelle tore de dimension n , habituellement noté dans la littérature mathématique Tn, l'espace topologique unique à homéomorphisme près défini comme :
Le tore de dimension n est une variété topologique compacte et connexe de dimension n. Obtenu comme quotient d'un espace vectoriel réel, Tn est une variété différentielle (compacte et connexe de dimension n) ; l'atlas maximal correspondant ne dépend ni du réseau, ni de l'espace vectoriel.
Si E est un espace vectoriel euclidien de dimension n et G un réseau de E, le quotient Tn=E/G se présente naturellement comme une variété plate.
De la même façon que pour construire un tore de surface externe de dimension 2 il fallait joindre deux à deux les côtés opposés d'un carré en le pliant dans une troisième dimension, pour construire un tore de surface n dimensionnelle, il faut joindre deux à deux les faces n-1 dimensionnelles opposées d'un hypercube de dimension n en pliant cet hypercube dans une nouvelle dimension n+1. Ainsi, un tore de surface externe 3 est le recollement des 3 paires de faces opposées d'un cube dans une quatrième dimension.
Le groupe fondamental de Tn est le groupe abélien libre à n générateurs, soit Zn.
Le tore de dimension n est l'unique groupe de Lie abélien compact. L'introduction des tores maximaux (sous-groupe de Lie abélien compact maximal) est d'une importance capitale dans l'étude des groupes de Lie compacts.