Courbe algébrique
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Une courbe algébrique est une courbe, le plus souvent plane, dont l’équation cartésienne peut se mettre sous forme polynômiale. Une courbe non algébrique est dite transcendante.

En géométrie algébrique, une courbe (En géométrie, le mot courbe, ou ligne courbe désigne certains sous-ensembles du plan, de l'espace usuels. Par exemple, les droites, les segments, les lignes polygonales et...) est une variété algébrique dont les composantes connexes sont toutes de dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre si c'est une...) 1. En pratique, on se restreint souvent aux courbes projectives non-singulières et connexes.

Définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.)

Une courbe algébrique (Une courbe algébrique est une courbe, le plus souvent plane, dont l’équation cartésienne peut se mettre sous forme polynômiale. Une courbe non algébrique est dite...) est plus formellement l’ensemble des points d’un espace géométrique dont les coordonnées cartésiennes sont solutions d’une équation algébrique.

L’espace géométrique considéré est le plus souvent le plan affine euclidien réel, mais il est possible :

- de recourir à des espaces de dimension supérieure à deux (espace ou hyperespace au lieu du plan) ;
- de se placer dans le cadre d’une autre géométrie (La géométrie est la partie des mathématiques qui étudie les figures de l'espace de dimension 3 (géométrie euclidienne) et, depuis le XVIIIe siècle, les figures d'autres types d'espaces (géométrie...) qu’affine euclidienne (projective par exemple);
- de travailler avec un autre corps de base que celui des réels (en cryptographie (La cryptographie est une des disciplines de la cryptologie s'attachant à protéger des messages (assurant confidentialité, authenticité et intégrité) en s'aidant souvent de secrets ou clés.) par exemple, on utilise des plans sur des corps finis).

Nous nous limiterons cependant ici au cas du plan affine euclidien réel.

Les coordonnées cartésiennes d’un point (Graphie) M dans le plan sont deux nombres ( habituellement réels, mais cela peut dépendre du plan considéré ) appelés respectivement abscisse et ordonnée, et notés habituellement x et y. Ils désignent les valeurs des projections du point M sur deux axes orthogonaux du plan.

Une équation algébrique dans le plan est une équation qui peut être mise sous la forme :

P ( x , y ) = 0 \,

P( x, y ) désigne un polynôme irréductible de degré (Le mot degré a plusieurs significations, il est notamment employé dans les domaines suivants :) non nul des coordonnées cartésiennes x et y.

Ordre et classement

Le polynôme   P   ainsi associé à une courbe n’est pas unique; en fait, il n’est défini qu’à une constante multiplicative près : si   P   est associé à une courbe, alors tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) polynôme   λ.P   où   λ   est un réel non nul lui est aussi associé. Cependant, tous ces polynômes sont du même degré, appelé ordre de la courbe algébrique.

Les courbes algébriques peuvent ainsi être classées suivant leur ordre n :

  • pour   n = 1  , nous avons les rectiques ; ce sont en fait les droites ;
  • pour   n = 2  , nous avons les coniques, ainsi appelées parce qu’il est possible de les obtenir comme intersection d’un cône et d’un plan; elles se répartissent en trois familles :
- les ellipses, dont le cercle;
- les hyperboles, dont l’hyperbole équilatère;
- et les paraboles.
  • pour   n = 3  , nous avons les cubiques;
  • pour   n = 4  , nous avons les quartiques;
  • pour   n = 5  , nous avons les quintiques;
  • pour   n = 6  , nous avons les sextiques;
  • pour   n = 7  , nous avons les septiques;
  • pour   n = 8  , nous avons les octiques, ou biquartiques;
  • pour   n = 9  , nous avons les noniques, ou tricubiques;
  • pour   n = 10  , nous avons les déciques, ou biquintiques;
  • pour   n = 11  , nous avons les undéciques;
  • pour   n = 12  , nous avons les duodéciques, ou triquartiques;
  • au-delà, et même assez souvent à partir de l’ordre 9, on parle plutôt de " courbe algébrique d’ordre n " ...
Page générée en 0.039 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique