Le fait que ces domaines utilisent la trigonométrie ne signifie pas que la connaissance de la trigonométrie soit requise pour pouvoir les aborder. Cela signifie que certains points dans ces domaines ne peuvent pas être compris sans la trigonométrie. Par exemple, un professeur de musique pourrait éventuellement ne rien connaître des mathématiques, mais savoir que Pythagore fut l'un des premiers à avoir apporté sa contribution à la théorie mathématique de la musique.
Dans certains des domaines listés juste avant il est facile d'imaginer comment la trigonométrie pourrait être employée. Par exemple, en navigation et en arpentage, les utilisations de la trigonométrie sont limitées à des cas simples, et ne requièrent que des connaissances figurant dans un manuel de trigonométrie pour débutant. Dans le cas de la théorie de la musique, l'application de la trigonométrie est liée au travail commencé par Pythagore, qui observa que les sons obtenus en pinçant deux cordes de différentes longueurs sont plus harmonieux lorsque les deux longueurs sont des petits multiples entiers d'une longueur commune. La ressemblance entre la forme d'une corde vibrante et une sinusoïde n'est pas un hasard. En océanographie, la ressemblance entre la forme de certaines vagues et une sinusoïde n'est non plus le fruit du hasard. Dans d'autres domaines, notamment en climatologie, en biologie, et en sciences économiques, il existe des périodicités saisonnières. L'étude de ces dernières implique souvent la nature périodique des fonctions sinus et cosinus.
Certains psychologues ont affirmé que les quotients intellectuels d'une population étaient répartis selon une courbe gaussienne en forme de cloche. Environ 40% de l'aire sous la courbe se trouve dans l'intervalle de 100 à 120 ; également, environ 40% des individus de la population ont obtenu entre 100 et 120 à des examens de Q.I. Environ 9% de l'aire sous la courbe se trouve dans l'intervalle de 120 à 140 ; également, environ 9% des individus de la population ont obtenu entre 120 et 140 à des examens de Q.I., etc. De même beaucoup d'autres choses sont distribuées selon une « courbe gaussienne », y compris les erreurs de mesure de quantités physiques ou le nombre de fois où vous obtenez des faces quand vous jetez une pièce de monnaie 10 000 fois. Pourquoi cette ubiquité des « gaussiennes » ? Il y a une raison théorique à cela, et elle invoque les transformées de Fourier et par conséquent les fonctions trigonométriques. Il s'agit de l'une des moult applications des transformées de Fourier aux statistiques.
Les fonctions trigonométriques sont également appliquées lorsque les statisticiens étudient les périodicités saisonnières, qui sont souvent représentées par des séries de Fourier.
Un concept plus abstrait que les séries de Fourier est la notion de transformée de Fourier. Les transformées de Fourier font intervenir des intégrales plutôt que des sommes, et sont employées dans un aussi grand nombre de domaines scientifiques variés. Beaucoup de lois naturelles expriment une relation entre une variation de quantités et les quantités elles-mêmes.
Par exemple: le taux de changement d'une population est parfois conjointement proportionnel à la population actuelle et à la part de la population pour laquelle la capacité de transport fait défaut. Ce genre de rapport s'appelle une équation différentielle. Si ces informations sont fournies, alors nous pouvons essayer d'exprimer la population en fonction du temps, et de « résoudre » l'équation. Les transformations de Fourier peuvent être employées pour convertir certaines équations différentielles en équations algébriques pour lesquelles des méthodes de résolution sont connues. Les transformations de Fourier ont beaucoup d'applications. Dans presque n'importe quel contexte scientifique dans lequel figurent les mots spectre, harmonique, ou résonance, les transformations de Fourier ou les séries de Fourier ne sont pas loin.