Effet Casimir - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

L’effet Casimir, tel que prédit par le physicien néerlandais Hendrik Casimir en 1948, est une force attractive entre deux plaques parallèles conductrices et non chargées. Cet effet, dû aux fluctuations quantiques du vide, existe également pour d'autres géométries d'électrodes. Expérimentalement, on utilise souvent des miroirs.

Forces de Casimir sur des plaques parallèles.
Forces de Casimir sur des plaques parallèles.

Cause

Les fluctuations quantiques du vide sont présentes dans toute théorie quantique des champs. L'effet Casimir est dû aux fluctuations du champ électromagnétique, décrit par la théorie de l'électrodynamique quantique.

L’énergie du « vide » entre deux plaques se calcule en tenant compte uniquement des photons (y compris des photons virtuels) dont les longueurs d’onde divisent exactement la distance entre les deux plaques ( \scriptstyle n\,\lambda=L , où n est un entier positif, λ la longueur d’onde d’un photon, et L la distance entre les deux plaques). Ceci implique que la densité d’énergie du vide (entre ces deux plaques) est fonction du nombre de photons qui peuvent exister entre ces deux plaques.

Plus les plaques sont proches, moins il y a de photons obéissant à la règle \scriptstyle n\,\lambda=L , car sont exclus les photons dont la longueur d’onde est supérieure à L. Il y a donc moins d’énergie.

La force entre ces deux plaques, à savoir la dérivée de l’énergie par rapport à L, est donc attractive.

Expression de la force par unité de surface

(Sauf remarque, les effets de bord sont toujours négligés)

Analyse dimensionnelle

Soient deux grandes plaques métalliques planes de surface S, parallèles entre elles, et séparées par une distance L. On suppose que, si les plaques sont rectangulaires avec \scriptstyle S=D \cdot H\, , l'espacement L entre les deux plaques parallèles est petit par rapport aux longueurs D et H. On peut alors calculer une force par unité de surface en négligeant les effets de bords.

On suppose de plus que les plaques sont des conducteurs parfaits de conductivité électrique infinie, et qu'elles ne sont pas chargées. L'effet étant d'origine quantique et relativiste, on s'attend à ce que la force par unité de surface de Casimir dépende des deux constantes fondamentales c (vitesse de la lumière dans le vide) et \hbar (quantum d'action). De plus, il est plus que probable que l'effet dépende aussi de la distance L entre les plaques. On postule donc que la force par unité de surface s'écrit :

\frac{dF}{dS} \ = \  k \ L^{\alpha} \ c^{\beta} \ \hbar^{\gamma}

k est un nombre pur, sans dimensions, et α,β,γ trois nombres à déterminer. L'analyse dimensionnelle donne le système d'équations :

\left\{\begin{matrix} \gamma \ & = \ + \ 1 \\  \alpha \ + \ \beta \ + \ 2 \, \gamma \ & = \ - \ 1 \\  - \ \beta \ - \ \gamma \ &  = \ - \ 2 \end{matrix}\right.

dont la solution unique est : β = γ = 1 et \alpha = - \, 4 , soit :

\frac{dF}{dS} \ = \  k \ \frac{\hbar \, c}{L^4}

Résultat exact de Casimir

Le calcul exact, fait par Casimir en 1948, suppose une température thermodynamique identiquement nulle : T = 0 K. Il donne une valeur non nulle négative de la constante k :

 \frac{dF}{dS} \ = \  - \ \frac{\pi^2}{240} \ \frac{\hbar \, c}{L^4}

Le signe moins indique que cette force est attractive ! Le lecteur intéressé par ce calcul le trouvera détaillé dans l'article de revue de Duplantier. La norme de la force attractive de Casimir entre deux plateaux d'aire A séparés par une distance L peut être calculée par la formule :

F \ = \ \frac{\pi^2}{240} \ \frac{\hbar \, c}{L^4} \ A

Effets de température finie

Les expériences réelles ayant toutes lieu à température finie : T > 0, il faut estimer ces effets de température, essentiellement dus aux rayonnement du corps noir. Introduisons la « température inverse » β = 1 / (kT), où k est la constante de Boltzmann. L'analyse dimensionnelle montre que le paramètre :

\alpha \ = \ \frac{\pi \beta \hbar c}{L}

est sans dimensions. On étudie alors la limite réaliste de courte distance L \to 0 à température T fixée, correspondant au cas où \alpha \gg  1 . Dans cette limite, on obtient :

 \frac{dF}{dS} \ = \  - \ \frac{\pi^2}{240} \ \frac{\hbar \, c}{L^4} \ - \ \frac{\pi^2}{45} \ \frac{1}{\beta} \ \frac{1}{(\beta \hbar c)^3} \ + \ \frac{1}{\beta} \ \frac{\pi}{L^3} \ e^{- \, \alpha} \ + \ O(e^{- \, 2 \, \alpha})

Le premier terme est le terme de Casimir à température nulle, le deuxième est la contribution attractive due au rayonnement du corps noir dans un volume infini, et le troisième terme correspond aux corrections de taille finie dues aux plaques sur la contribution du rayonnement du corps noir.

À la température ambiante :  T \sim 300 \ K et pour un espacement réaliste  L \sim 0.5 \ \mu m , la valeur numérique de \alpha \sim 48  : le troisième terme correspondant aux corrections de taille finie sur la contribution du rayonnement du corps noir, en e^{- \, \alpha} , est donc totalement négligeable en pratique.

Quant au rapport (sans dimensions) du second terme sur le premier, il vaut alors :

 \gamma \ = \ \frac{\mathrm{corps ~ noir}}{\mathrm{Casimir ~ a ~} T = 0} \ = \ \frac{240}{45} \ \frac{L^4}{(\beta \hbar c)^4} \ \sim \ 10^{-4}

Dans les conditions expérimentales usuelles, tout se passe donc comme si on était à température nulle. Le lecteur intéressé par une analyse détaillée la trouvera dans l'article de revue de Duplantier.

Page générée en 0.096 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise